Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 24(3): 271-281, 2018 03.
Article in English | MEDLINE | ID: mdl-29400712

ABSTRACT

Hedgehog pathway-dependent cancers can escape Smoothened (SMO) inhibition through mutations in genes encoding canonical hedgehog pathway components; however, around 50% of drug-resistant basal cell carcinomas (BCCs) lack additional variants of these genes. Here we use multidimensional genomics analysis of human and mouse drug-resistant BCCs to identify a noncanonical hedgehog activation pathway driven by the transcription factor serum response factor (SRF). Active SRF along with its coactivator megakaryoblastic leukemia 1 (MKL1) binds DNA near hedgehog target genes and forms a previously unknown protein complex with the hedgehog transcription factor glioma-associated oncogene family zinc finger-1 (GLI1), causing amplification of GLI1 transcriptional activity. We show that cytoskeletal activation through Rho and the formin family member Diaphanous (mDia) is required for SRF-MKL-driven GLI1 activation and for tumor cell viability. Remarkably, nuclear MKL1 staining served as a biomarker in tumors from mice and human subjects to predict tumor responsiveness to MKL inhibitors, highlighting the therapeutic potential of targeting this pathway. Thus, our study illuminates, for the first time, cytoskeletal-activation-driven transcription as a personalized therapeutic target for combatting drug-resistant malignancies.


Subject(s)
Carcinoma, Basal Cell/drug therapy , Drug Resistance, Neoplasm/genetics , Serum Response Factor/genetics , Trans-Activators/genetics , Zinc Finger Protein GLI1/genetics , Animals , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/genetics , Hedgehog Proteins , Humans , Mice , Multiprotein Complexes/genetics , Signal Transduction , Transcriptional Activation
3.
Cancer Cell ; 27(3): 342-53, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25759020

ABSTRACT

Advanced basal cell carcinomas (BCCs) frequently acquire resistance to Smoothened (SMO) inhibitors through unknown mechanisms. Here we identify SMO mutations in 50% (22 of 44) of resistant BCCs and show that these mutations maintain Hedgehog signaling in the presence of SMO inhibitors. Alterations include four ligand binding pocket mutations defining sites of inhibitor binding and four variants conferring constitutive activity and inhibitor resistance, illuminating pivotal residues that ensure receptor autoinhibition. In the presence of a SMO inhibitor, tumor cells containing either class of SMO mutants effectively outcompete cells containing the wild-type SMO. Finally, we show that both classes of SMO variants respond to aPKC-ι/λ or GLI2 inhibitors that operate downstream of SMO, setting the stage for the clinical use of GLI antagonists.


Subject(s)
Anilides/therapeutic use , Carcinoma, Basal Cell/drug therapy , Drug Resistance, Neoplasm/genetics , Pyridines/therapeutic use , Receptors, G-Protein-Coupled/genetics , Skin Neoplasms/drug therapy , Anilides/chemistry , Binding Sites , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , DNA Mutational Analysis , Exome , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Models, Molecular , Mutation , Protein Structure, Tertiary , Pyridines/chemistry , Receptors, G-Protein-Coupled/chemistry , Sequence Analysis, DNA , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Smoothened Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...