Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 38: 101676, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38463640

ABSTRACT

In the tumor microenvironment, transforming growth factor ß (TGF-ß) contributes to neutrophil development toward a pro-tumor phenotype; however, the molecular mechanism by which this occurs remains unclear. Therefore, we explored the role of TGF-ß in N2 neutrophil polarization and the subsequent effect on oral leukoplakia/oral squamous cell carcinoma (OL/OSCC) cells. The TGF-ß-stimulated N2 culture supernatant promoted the proliferation of OL/OSCC cells. Analysis of the N2 supernatant using a cytokine array revealed significantly upregulated expression of soluble forms of receptor for advanced glycation end products (RAGE). TGF-ß was found to induce the expression of RAGE and matrix metalloproteinase 9 (MMP9) in neutrophils. Additionally, MMP9 treatment could cleave RAGE and promote its secretion by neutrophils, thereby promoting cancer cell proliferation. In an established mouse model of oral cancer using 4NQO, RAGE were found to be highly expressed. Importantly, neutralizing antibodies against RAGE significantly inhibited oral cancer progression in mice. Analysis of clinical data from the TCGA database revealed that RAGE and MMP9 are highly expressed in head and neck squamous cell carcinoma (HNSCC) and that RAGE expression is significantly positively correlated with neutrophil infiltration. In conclusion, our results indicate that TGF-ß promotes N2 neutrophil polarization through upregulation of soluble RAGE (sRAGE) secretion, leading to OSCC cell proliferation. Our findings also suggest that the sRAGE formed during N2 polarization may be a potential therapeutic target in OL/OSCC.

2.
Nat Commun ; 13(1): 6684, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335118

ABSTRACT

Cyclic di-GMP (c-di-GMP) transduces extracellular stimuli into intracellular responses, coordinating a plethora of important biological processes. Low levels of c-di-GMP are often associated with highly virulent behavior that depends on the type III secretion system (T3SS) effectors encoded, whereas elevated levels of c-di-GMP lead to the repression of T3SSs. However, extracellular signals that modulate c-di-GMP metabolism to control T3SSs and c-di-GMP effectors that relay environmental stimuli to changes in T3SS activity remain largely obscure. Here, we show that the quorum sensing signal autoinducer-2 (AI-2) induces c-di-GMP synthesis via a GAPES1 domain-containing diguanylate cyclase (DGC) YeaJ to repress T3SS-1 gene expression in Salmonella enterica serovar Typhimurium. YeaJ homologs capable of sensing AI-2 are present in many other species belonging to Enterobacterales. We also reveal that taurocholate and taurodeoxycholate bind to the sensory domain of the DGC YedQ to induce intracellular accumulation of c-di-GMP, thus repressing the expression of T3SS-1 genes. Further, we find that c-di-GMP negatively controls the function of T3SSs through binding to the widely conserved CesD/SycD/LcrH family of T3SS chaperones. Our results support a model in which bacteria sense changes in population density and host-derived cues to regulate c-di-GMP synthesis, thereby modulating the activity of T3SSs via a c-di-GMP-responsive T3SS chaperone.


Subject(s)
Bile Acids and Salts , Escherichia coli Proteins , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms
3.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234131

ABSTRACT

In view of the problem that the enrichment and migration law of the Ti element in the slag of vanadium-titanium magnetite during the melting process is not clear, the phase transformation is not clear and the enrichment effect is not obvious, the single factor experiment and orthogonal experiment are used to optimize the melting conditions of Ti enrichment. Through XRD, SEM and EDS analysis, the effects of melting temperature, alkalinity and carbon content on the Ti phase in the slag are studied, and the occurrence form and migration law of the Ti element in the slag system under different melting conditions are clarified. The results demonstrate that increasing the basicity and melting temperature is beneficial to the enrichment of Ti, but it is too high it will lead to the formation of pyroxene, diopside and magnesia-alumina spinel, affecting the enrichment of Ti. The increase in carbon content can make Ti occur in slag in the form of titanium oxides such as TiO, TiO2, Ti2O3 and Ti3O5, but excessive carbon content leads to the excessive reduction of Ti compounds to TiCN and TiC. After optimization, under the melting conditions of alkalinity 1.2, the melting temperature 1500 °C and carbon content 15%, the content of Ti in slag can reach 18.84%, and the recovery rate is 93.54%. By detecting the content of Fe and V in molten iron, the recovery rates are 99.86% and 95.64%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...