Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 79(12): 5162-5172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574969

ABSTRACT

BACKGROUND: Root-knot nematodes (RKNs), including Meloidogyne species, are among the most destructive plant-parasites worldwide. Recent evidence suggests that entomopathogenic fungi (EPF) can antagonize RKNs. Such antagonistic effects are likely mediated by toxic metabolites, including volatile organic compounds (VOCs), produced by the fungi. However, how widespread these effects are across EPF species, and which VOCs mediate negative interactions between EPF and RKNs needs to be further elucidated. RESULTS: First, we evaluated the nematicidal effect of VOCs emitted by 46 EPF isolates against Meloidogyne incognita and found variable toxicity depending on the isolate. Second, we measured the nematicidal effect of highly toxic isolates, including species in the genus Talaromyces, Aspergillus, Clonostachys, and Purpureocillium and, third, we analyzed the nematicidal effect of major VOCs, including 2-methyl-1-propanol, 3-methyl-1-butanol, isopropyl alcohol and 2-methyl-3-pentanone. The mortality of M. incognita juveniles (J2s) was generally high (50%) either via airborne or in-solution contact with VOCs. Moreover, the tested VOCs significantly inhibited egg hatching, and repelled J2s away from the VOCs. CONCLUSION: This study not only provides insights into the ecological function of VOCs in the rhizosphere, but also provides new approaches for developing environmentally friendly control methods of RKNs in agroecosystems. © 2023 Society of Chemical Industry.


Subject(s)
Hypocreales , Tylenchoidea , Volatile Organic Compounds , Animals , Volatile Organic Compounds/metabolism , Antinematodal Agents/pharmacology , 2-Propanol/pharmacology
2.
Front Bioeng Biotechnol ; 10: 1023693, 2022.
Article in English | MEDLINE | ID: mdl-36338132

ABSTRACT

Continuous cropping obstacle (CCO) in tobacco is a prevalent and intractable issue and has not yet been effectively solved. Many researchers have favored exploring environmentally friendly and sustainable solutions to CCO (e.g, the application of (bio-) organic fertilizers). Therefore, to study the effects of functional organic fertilizers (FOFs) on tobacco CCO, we applied five types of fertilizers in a tobacco continuous cropping field with red soil (i.e., CF: tobacco-special chemical fertilizers; VOF: vermicompost-based FOF; HOF: humic acid-based FOF; WOF: wood biochar-based FOF; COF: compound FOF). The tobacco plant agronomic traits, leaf yield, economic value, and chemical quality (nicotine, total sugar, K2O, Cl contents, etc.) were evaluated via the continuous flow method. Meanwhile, we determined rhizosphere soil physicochemical properties, phenolic acids content, and bacterial community diversity by high-throughput sequencing. The results show that FOFs improved the tobacco plant agronomic traits, leaf yield (by 2.9-42.8%), value (by 1.2-47.4%), and chemical quality when compared with CF. More content of NH4 +-N, available P, and available K were discovered in the rhizosphere soil in VOF, HOF, and WOF. The rhizosphere sinapic acid and total phenolic acids content declined in the FOF treatments (1.23-1.56 and 7.95-8.43 mg kg-1 dry soil, respectively) versus those in the CF treatment (2.01 and 10.10 mg kg-1 dry soil, respectively). Moreover, the rhizosphere bacterial community structure changed under FOF functions: the beneficial microbes Actinobacteria, Firmicutes, Streptomyces, and Bacillus increased, and the harmful microbes Acidobacteria and Gemmatimonadota decreased in abundance. There was a positive correlation between the tobacco leaf yield and soil NH4 +-N, TC content, and the relative abundance of Proteobacteria and Actinobacteriota. In summary, the application of VOF and WOF is a modest, practical, and environmentally friendly strategy to alleviate tobacco CCO from the standpoint of recycling solid waste.

3.
J Invertebr Pathol ; 193: 107800, 2022 09.
Article in English | MEDLINE | ID: mdl-35870517

ABSTRACT

Increasing the infective juvenile (IJ) yields of entomopathogenic nematodes in monoxenic culture systems would reduce their production cost for the market. Ascarosides act as universal nematode pheromones with developmental and behavioral effects of nematodes. Dimethyl sulfoxide (DMSO) is unexpectedly found to enhance the IJ yields of entomopathogenic nematodes on fortified nutrient broth plates. In this study, the influence of selected ascarosides (ascr#7, ascr#9 and ascr#11) and DMSO in three concentrations on the IJ yields of S. carpocapsae All and H. bacteriophora H06 in liquid culture flasks was determined, and the critical development parameters (IJ recovery rate, number of hermaphrodites, number of visible eggs in a hermaphrodite) were examined for H. bacteriophora H06. The results demonstrated that IJ yields were significantly improved in the liquid medium containing 0.01 % DMSO, and 0.02 nM ascr#11 for S. carpocapsae All, and 0.1 % and 0.01 % DMSO and 0.02 pM ascr#11 for H. bacteriophora H06 in proper concentrations. Furthermore, it was discovered that increased recovery rate, hermaphrodite numbers and eggs in the hermaphrodites may contribute to the improved IJ yields of H. bacteriophora H06 in DMSO-supplemented liquid medium. Compared with the control flasks, the IJ yields from the flasks containing 0.01 % DMSO were 15 % and 35 % higher for S. carpocapsae All and H. bacteriophora H06 respectively in 15 days. The cost for ascarosides and DMSO is almost negligible. The results would provide practical technology for low-cost commercial production of these nematodes for pest management program.


Subject(s)
Nematoda , Rhabditida , Animals , Dimethyl Sulfoxide , Pest Control, Biological , Pheromones
4.
Sci Total Environ ; 832: 154780, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35390384

ABSTRACT

An acidified magnetic sludge-biochar (MSB) was prepared to enhance ammonium nitrogen (AN) removal efficiency in eutrophic water, and MSB was obtained by secondary pyrolysis of sludge biochar powder. A series of MSB were prepared under 300, 400, 500, 600 °C and different valence states of iron ions by impregnation pyrolysis, which is based on the deposition of unstable iron minerals on biochar matrix. Physicochemical properties of pristine biochar and MSB were revealed through characterization analysis, suggesting that MSB prepared by ferric chloride at 400 °C presented the largest adsorption capacity, and the acid-modification enhanced the ammonium adsorption capacity by 10.7%. Electrostatic attraction and ion-exchange processes were identified as the main adsorption mechanisms of MSB on AN. As the most dominant mechanism, ion exchange of AN with functional groups containing -OH and CO on the surface of MSB resulted in the relative content of -OH (61.3%) and CO (11.5%) bonds reduced to 34.2% and 7.0% respectively. The novel magnetic sludge-biochar with acid-modification possessed enhanced electron transfer capacity, revealing a removal pathway of ammonium by nitrification. The findings above demonstrated that MSB is a promising adsorbent for ammonium removal and can be applied to the natural nitrogen-rich water regulation.


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Adsorption , Ammonium Compounds/analysis , Charcoal , Denitrification , Iron/analysis , Magnetic Phenomena , Nitrogen/analysis , Perception , Sewage , Water , Water Pollutants, Chemical/analysis
5.
J Invertebr Pathol ; 188: 107717, 2022 02.
Article in English | MEDLINE | ID: mdl-35031295

ABSTRACT

Recovery, yield, and dispersal are crucial developmental and behavioral indices for the infective juveniles of entomopathogenic nematodes, which are used as biocontrol agents against a variety of agricultural pests. Ascarosides and isopropylstilbene (ISO) function as nematode pheromones with developmental and behavioral effects. In this study, 11 synthesized ascarosides identified from Caenorhabditis elegans, together with ISO identified from Photorhabdus luminescens, were used to determine their influence on the IJ recovery, growth on agar plates, and dispersal of S. carpocapsae All, H. bacteriophora H06 and H. indica LN2 nematodes. Compared with the controls, significant differences in IJ recovery of three nematode species were detected from the supernatants of their corresponding bacterial cultures with almost all ascarosides or isopropylstilbene (ISO) at 0.04 nM in 6 days. The highest IJ recovery percentages was obtained from ISO and ascr#3 for All strain, ascr#5 and ascr#6 for LN2 strain, and ISO and ascr#12 for H06 strain. The ISO detected from Photorhabdus bacteria also induced IJ recovery of S. carpocapsae All. IJ yields was significantly stimulated by all synthesized compounds for S. carpocapsae All, and by most compounds for H. bacteriophora H06. The higher IJ yields varied with ascarosides. Ascr#7 and DMSO was common for the improved IJ yields of both nematode species. The three nematode species showed marked differences in dispersal behavior. In response to the ascarosides or ISO, S. carpocapsae All IJs actively moved with different dispersal rates, H. indica LN2 IJs in very low dispersal rates, and H. bacteriophora H06 IJs in variable and even suppressed rates on the agar plates at least during the assay period. Based on the synthesized standards, ascr#1, ascr#9 and ascr#10 were detected from three nematode species, ascr#5 and ascr#11 also from S. carpocapsae All and H. bacteriophora H06, and ascr#12 also from H. bacteriophora H06 and H. indica LN2. Ascr#9 was most abundant in three nematode species. Compared with the sterile PBS, significantly more ascr#1, ascr#9 and ascr#10 were detected from S. carpocapsae All and H. indica LN2, but less ascr#5 and ascr#11 from S. carpocapsae All, ascr#1, ascr#5, ascr#11 and ascr#12 from H. bacteriophora H06, in the corresponding bacterial supernatant. It seems that the bacterial supernatants could regulate the ascaroside secretion by the three nematode species. These results will provide useful clues for selecting suitable ascarosides to induce the recovery, improve the yield, and enhance the dispersal of the IJs of these nematodes.


Subject(s)
Nematoda , Photorhabdus , Agar , Animals , Nematoda/physiology , Pheromones
6.
Int J Biol Macromol ; 194: 198-203, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34871652

ABSTRACT

Microglia are the main effector cells of immune response in central nervous system and are important targets for disease prevention and treatment. Κ-carrageenan Oligosaccharide (KOS), obtained by enzymatic hydrolysis from carrageenan of marine red algae, can inhibit the release of inflammatory factors from the over-activated microglia. The mechanism of microglia autophagy induced by KOS and its relationship with inflammation were studied to explore the development prospect of KOS in the research and treatment of inflammatory related diseases. The effect of KOS on inducing autophagy was detected by the secretion of cytokines by lipopolysaccharide (LPS)-activated microglia, respectively. The protein expression of autophagy-related signaling pathways were detected by Western Blot. The results showed that KOS could significantly protect the microglia from over-activated inflammatory by inducing the autophagy and inhibiting the release of inflammatory cytokines. And KOS could reduce the expression of the protein that related to the AMPK/ULK1 pathways in microglia, so as to regulate the autophagy pathway, and inhibit the inflammatory response of over-activated microglia. The study on the effect of KOS on microglia autophagy and excessive inflammatory response will provide a theoretical basis for further studies on the inhibition of nerve injury by regulating microglia autophagy and inflammatory response.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/drug effects , Carrageenan/pharmacology , Immunity/drug effects , Microglia/drug effects , Microglia/metabolism , Animals , Biomarkers , Inflammation Mediators , Mice , Signal Transduction/drug effects
7.
J Econ Entomol ; 113(1): 64-72, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31602480

ABSTRACT

Spodoptera litura (F.) is an obnoxious cosmopolitan pest that causes serious damage to different economic crops. Entomopathogenic nematodes (EPN) have the potential to control the S. litura larvae. Fifteen EPN isolates were screened, and Steinernema sp. 64-2, four isolates of S. carpocapsae (Weiser), S. longicaudum (Shen & Wang) X-7, and two isolates of H. indica (Poinar, Karunaka & David) were found to cause higher mortality of the second, third, and fourth instars of S. litura than the other tested isolates, with larval mortality rates > 90% after 48 h of exposure. An exposure rate of 12.5 infective juveniles per larva was enough for S. carpocapsae A24, All, and G-R3a-2 and S. longicaudum X-7 to cause 100% mortality of the second instar, and for S. longicaudum X-7 and H. indica 212-2 to cause 100% mortality of the third instar. Five EPN isolates were tested on their virulence at different temperatures and found that all the five EPN isolates performed well against the S. litura larvae at 25 and 30°C, but were not active at 10 and 15°C. Two S. carpocapsae isolates (All and Mex) were virulent against the S. litura larvae at lower temperatures. The five tested EPN isolates were also found to have the ability to infect and kill the pupae of S. litura in the laboratory. The present study further proves that EPN are effective at controlling S. litura, which may partially substitute the use of chemical insecticides, thus reduce the overuse of chemical insecticides.


Subject(s)
Moths , Rhabditida , Animals , Larva , Pest Control, Biological , Spodoptera , Nicotiana
9.
Front Microbiol ; 7: 894, 2016.
Article in English | MEDLINE | ID: mdl-27379037

ABSTRACT

Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and destructive disease of tobacco. Crop rotation is essential in controlling black shank. Here, we confirmed that rotating black shank-infested fields with rapeseed (Brassica napus) suppressed the incidence this disease. Further study demonstrated that rapeseed roots have a strong ability to attract zoospores and subsequently stop the swimming of zoospores into cystospores. Then, rapeseed roots secrete a series of antimicrobial compounds, including 2-butenoic acid, benzothiazole, 2-(methylthio)benzothiazole, 1-(4-ethylphenyl)-ethanone, and 4-methoxyindole, to inhibit the cystospore germination and mycelial growth of P. parasitica var. nicotianae. Thus, rapeseed rotated with tobacco suppresses tobacco black shank disease through the chemical weapons secreted by rapeseed roots.

SELECTION OF CITATIONS
SEARCH DETAIL
...