Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(7): 3162-3169, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36734987

ABSTRACT

The self-assembly of the high-nuclearity Ln-exclusive nanoclusters is challenging but of significance due to its aesthetically pleasing architectures and far-reaching latent applications in magnetic cooling technologies. Herein, two novel high-nuclearity lanthanide nanoclusters were successfully synthesized under solvothermal conditions, formulated as {[Gd18(IN)20(HCOO)8(µ6-O)(µ3-OH)24(H2O)4]·4H2O}n and {[Eu18(IN)16(HCOO)8(CH3COO)4(µ6-O)(µ3-OH)24(H2O)4]·5H2O}n (abbreviated as Gd18 and Eu18, HIN = isonicotinic acid). Both of them possess novel and exquisite windmill-shaped cationic cores in the family of high-nuclearity Ln-exclusive nanoclusters. Remarkably, the adjacent second building units are interconnected into a three-dimensional (3D) metal-organic framework by IN- ligands. As expected, the abundant existence of GdIII ions endows Gd18 with a favorable magnetic entropy change at 2.0 K for ΔH = 7.0 T (-ΔSmmax = 40.0 J kg-1 K-1), and Eu18 displays the typical luminescence of EuIII ions.

2.
Sensors (Basel) ; 23(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36772154

ABSTRACT

Online rapid detection of a fertilizer solution's type and concentration is crucial for intelligent water and fertilizer machines to realize intellectual precision variable fertilization. In this paper, a cylindrical capacitance sensor was designed based on the dielectric properties of the fertilizer solution, and an online rapid detection method of fertilizer type and concentration was proposed based on the characteristic frequency response mode. Three fertilizer solutions, potassium chloride, calcium superphosphate, and urea, were used as test objects. Ten concentrations of each fertilizer solution in the 10~100 g/L range were taken as the test fertilizer solution. Then, under the action of a series of sine wave excitation signals from 1 kHz to 10 MHz, the sensor's amplitude-frequency/phase-frequency response data were obtained. The detection strategy of 'first type, then concentration' was adopted to realize rapid online detection of fertilizer type and concentration. Experimental results indicated that the maximum relative error of the sensor stability test was 0.72%, and the maximum error of concentration detection was 7.26%. Thus, the intelligent water and fertilizer machine can give feedback on the information of a fertilizer solution in real-time during the process of precise variable fertilization, thus improving the intelligence of water and fertilizer machines.

3.
Inorg Chem ; 61(18): 7180-7187, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35477290

ABSTRACT

Assembling and studying high-nuclearity 3d-4f metal clusters represent a pregnant and challenging research hotspot. Based on anionic template and ligand-controlled hydrolytic methods, two heterometallic metal clusters, formulated as [Gd23Ni20(DTA)20(CO3)4(CH3COO)6(SiO4)4(CH3CH2OH)2(µ3-OH)33(µ2-OH)4(H2O)16]·Cl2·30H2O and [Eu23Ni20(DTA)20(CO3)4(CH3COO)6(SiO4)4(CH3CH2OH)2(µ3-OH)33(µ2-OH)4(H2O)16]·Cl2·46H2O (abbreviated as Gd23Ni20, Eu23Ni20, H2DTA = thiodiglycolic acid), are successfully obtained, which both feature similar double-shell-shaped structures with a Ni20 building unit encapsulating a Ln23 aggregation. The structural analysis illustrates that the SiO44- anion, serving as the anionic template in this work, is reported for the second time in 3d-4f metal clusters. In terms of the magnetic properties, large amounts of Gd3+ and Ni2+ ions contribute to the MCE of compound Gd23Ni20, along with 38.15 J kg-1 K-1 at ΔH = 7.0 T for 2.0 K. It is worth mentioning that compound Gd23Ni20 exhibits an excellent magnetic entropy change at low fields (-ΔSm = 19.10 J kg-1 K-1 at 2.0 K for ΔH = 2.0 T). In addition, Gd23Ni20 exhibits preferable solvent and thermal stability.

4.
Dalton Trans ; 51(9): 3502-3511, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35142313

ABSTRACT

Carbon dioxide (CO2) and the combustion of sulfide in gasoline are the main causes of air pollution. A great deal of attention has been paid to solving the problem and the catalytic reaction seems to be a decent choice. Due to the high-density of Lewis acidic active sites, polyoxometalates are undoubtedly an ideal choice for the sulfur oxidation reaction. With the reasons foregoing, two novel Zn-capped polyoxometalate-based organic-inorganic hybrids, {[α-PMoV2MoVI10O39(OH)Zn2][bbbm]3}·0.5C2H5OH (1) and TBA2{[ε-PMoV8MoVI4O37(OH)3Zn4][phim]3} (2) ((where bbbm = 1-(4-imidazol-1-ylbutyl) imidazole) and phim = 2-phenylimidazole) were successfully obtained by hydrothermal synthesis. In the two compounds, the N-donor ligands in a monodentate or bidentate coordination mode are directly connected to the Keggin anions by Zn-capped atoms, forming an extended one-dimensional chain. It is noteworthy that compound 2 ends up with an interesting spiral infinite chain possibly thanks to the TBA+ cations residing in gaps as structure-directing agents. Simultaneously, the catalytic properties indicate that compounds 1 and2 as efficient heterogeneous catalysts display a decent catalytic activity in the sulfur removal process. Especially, 2 enabled satisfying catalytic oxidation of dibenzothiophene (DBT) to produce more valuable dibenzothiophene sulfone (DBTO2) at 55 °C, and the conversion almost reached 99%. Besides, compound 2 also shows satisfactory catalytic effectiveness in the oxidation of various epoxides in the CO2 cycloaddition reaction, which suggests that compound 2 has the potential to function as a dual functional material with tremendous prospects in sulfur oxidation and carbon dioxide cycloaddition for the first time.

5.
Dalton Trans ; 51(7): 2669-2673, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35129562

ABSTRACT

The distinct nanosized cluster Gd22Ni21 was isolated using a mixture of anions (SO32- and SO42-) as templates, and to the best of our knowledge, this was the first such 3d-4f cluster to have been developed. Additionally, of a number of 3d-4f heterometallic clusters, Gd22Ni21 showed the largest low-field magnetic entropy change (26.1 J kg-1 K-1) at 2.0 K and ΔH = 2.0 T.

6.
Dalton Trans ; 50(39): 13925-13931, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34528636

ABSTRACT

Designing and synthesizing lanthanide clusters have always been a research hotspot. Herein, three lanthanide clusters with the formula [Ln8(IN)14(µ3-OH)8(µ2-OH)2(H2O)8]·xH2O (Ln = 1-Gd and x = 11; Ln = 2-Dy and x = 8; Ln = 3-Eu and x = 8) have been isolated in the presence of isonicotinic acid under solvothermal conditions. Structural analysis indicates that those three compounds are isostructural, featuring boat-shaped {Ln8} metal frameworks. Magnetic measurements reveal that 1-Gd exhibits a larger MCE with the maximum -ΔSm value of 31.77 J kg-1 K-1 at 2 K for ΔH = 7 T, while 2-Dy displays slow magnetization relaxation. Besides, the photoluminescence properties of 3-Eu were investigated.

7.
Inorg Chem ; 60(17): 13748-13755, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34428369

ABSTRACT

Two Ni-substituted polyoxometalates (NiSPs), [Ni6(Py)6(H2O)5(µ3-OH)3(PW9O34)]2·10H2O (1), [Ni7(Py)6(Im)(H2O)5O(WO4)(µ3-OH)3(H2PW9O34)]·3H2O (2) (Py = pyridine, Im = imidazole), were successfully hydrothermally synthesized. Compounds 1 and 2 have significantly different configurations by introducing different amounts of imidazole ligands. For compound 1, two malposed {Ni6(Py)6PW9} units that are face to face are bridged by two Ni-O-W bonds to constitute an isolated dimeric structure. Differently, the {Ni7(Py)6(Im)PW9}2 dimer in compound 2 connects with four adjacent dimers by four {WO4} groups in an interesting two-dimensional (2-D) arrangement. The magnetism of compounds 1 and 2 was studied, and magnetic test results demonstrated that both compounds have ferromagnetic interactions between the nickel centers. Meanwhile, the third-order nonlinear optical (NLO) measurements indicated that compound 1 can serve as potential nonlinear optical materials.

8.
Chempluschem ; 86(7): 1014-1020, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34286917

ABSTRACT

A pure inorganic cluster, H47 Na2 Co4 Mo24 (PO4 )11 O72 ⋅ 15H2 O (denoted as {Co4 Mo24 }), has been successfully synthesized by hydrothermal method. Notably, the assembly of a central {Co2 PO4 } tetrahedron and four peripheral {Co[P4 Mo6 ]} fragments gives rise to a rare "quasi-Keggin" structure of {Co4 Mo24 }, in which Co linkers continue to bridge adjacent substructures, resulting in the generation of 3D framework with large cavities. Benefitting from the combination of strong reductive {P4 Mo6 } units and Co active centers, the photocatalytic system with {Co4 Mo24 } as heterogeneous catalyst exhibits excellent activity for CO2 conversion to CO, offering the CO formation rate of 1848.3 µmol g-1 h-1 with high selectivity of 97.0 %. Besides, thermogravimetric and X-ray diffraction analysis confirm that {Co4 Mo24 } can maintain stable during the photocatalytic reaction process.

9.
Dalton Trans ; 50(26): 9137-9143, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34115085

ABSTRACT

Two captivating {P4Mo6}-based compounds, formulated as (H2bbi)2{[Co2(bbi)][Co2.33(H2O)4][H9.33CoP8Mo12O62]}·4H2O (1) and (H2bbi){[Zn(Hbbi)]2[Zn0.75(bbi)][K2Zn(H2O)4][H8.5ZnP8Mo12O62]} (2) [bbi = 1,1'-(1,4-butanediyl)bis(imidazole)], were successfully synthesized under hydrothermal conditions. Structural analysis demonstrates that compounds 1 and 2 are constructed from hourglass-shaped structures [M(P4Mo6O31)2]n- (M = Co, Zn), which are all made up of molybdophosphates and one transition metal ion as the central connecting node. Compounds 1 and 2 feature three-dimensional (3D) frameworks, which are all connected to form a 3D structure by metal ions and bbi ligands. More interestingly, compound 1 exhibits higher catalytic activity than 2 in CO2 photoreduction due to the suitable energy band structure of Co species in {P4Mo6} clusters. The CO yield was 3261 µmol g-1 with high selectivity in 8 h for compound 1 in photocatalytic CO2 reduction, which is highly promising in the photocatalytic field. Additionally, the photoluminescence properties of 2 were investigated.

10.
IEEE Trans Biomed Eng ; 68(7): 2289-2300, 2021 07.
Article in English | MEDLINE | ID: mdl-33646944

ABSTRACT

OBJECTIVE: As a newly developed technique, focused microwave breast hyperthermia (FMBH) can provide accurate and cost-effective treatment of breast tumors with low side effect. A clinically feasible FMBH system requires a guidance technique to monitor the microwave power distribution in the breast. Compressive thermoacoustic tomography (CTT) is a suitable guidance approach for FMBH, which is more cost-effective than MRI. However, no experimental validation based on a realized FMBH-CTT system has been reported, which greatly hinders the further advancement of this novel approach. METHODS: We developed a preclinical system prototype for the FMBH-CTT technique, containing a microwave phased antenna array, a microwave source, an ultrasound transducer array and associated data acquisition module. RESULTS: Experimental results employing homogeneous and inhomogeneous breast-mimicking phantoms demonstrate that the CTT technique can offer reliable guidance for the entire process of the FMBH. In addition, small phase noises do not deteriorate the overall performance of the system prototype. CONCLUSION: The realized preclinical FMBH-CTT system prototype is capable for noninvasive, accurate and low-side-effect breast tumor treatment with effective guidance. SIGNIFICANCE: The experimentally validated FMBH-CTT system prototype provides a feasible paradigm for CTT guided FMBH, establishes a practical platform for future improvement of this technique, and paves the way for potential clinical translation.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Female , Humans , Hyperthermia , Magnetic Resonance Imaging , Microwaves , Phantoms, Imaging
11.
Chempluschem ; 86(1): 191-197, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33502826

ABSTRACT

Two new polyoxometalate (POM)-based hybrid compounds modified by a Schiff base, [Fe(DAPSC)(H2 O)2 ]2 [HPMo2 V Mo10 VI O40 ] ⋅ 5H2 O (1) and [Fe(DAPSC)(H2 O)]2 [HPV3 IV Mo4 V Mo7 VI O42 ] ⋅ 6H2 O (2), (DAPSC=2,6-diacetylpyridine bis-(semicarbazone)), have been successfully constructed from typical Keggin POMs, iron ions, and DAPSC ligands under hydrothermal condition. Structural analysis demonstrates that the Fe-Schiff base ligand units are free from polyacid anions in compound 1. While in compound 2, the Fe-Schiff base ligand units are bridged with polyacid anions via Fe-O bonds to emerge a stable double-supported skeleton. Noticeably, owing to the introduction of vanadium in H5 PMo10 V2 O40 ⋅ 32.5H2 O, a divanadium-capped configuration is shaped in compound 2. Besides, the third-order nonlinear optical (NLO) properties of two compounds were explored. It should be noted that both compounds 1 and 2 have two-photon absorption properties, which indicates that the two compounds are potential nonlinear optical materials.

12.
RSC Adv ; 10(56): 33628-33634, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519046

ABSTRACT

Two three-dimensional (3D) coordination polymers, namely MnII 6(CH3COO)2(HCOO)2(IN)8(C4H8O)2(H2O) and MnIII 6MnII 12(µ3-O)6(CH3COO)12(IN)18(H2O)7.5 (abbreviated as Mn II 6 and Mn II 12 Mn III 6 respectively; HIN = isonicotinic acid), were synthesized by the reaction of Mn(CH3COO)2·4H2O and isonicotinic acid under solvothermal conditions. Magnetic studies revealed that antiferromagnetic interactions may be present in compounds Mn II 6 and Mn II 12 Mn III 6 . Moreover, the values of -ΔS m (26.27 (Mn II 6 ) and 37.69 (Mn II 12 Mn III 6 ) J kg-1 K-1 at ΔH = 7 T) are relatively larger than those of the reported Mn-based coordination polymers. This work provides a great scope in the magnetocaloric effect (MCE) of pure 3d-type systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...