Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
2.
Se Pu ; 42(4): 387-392, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38566428

ABSTRACT

The residual amount of halogenated solvents in olive oil is an important indicator of its quality. The National Olive Oil Quality Standard GB/T 23347-2021 states that the residual amount of individual halogenated solvents in olive oil should be ≤0.1 mg/kg and that the total residual amount of halogenated solvents should be ≤0.2 mg/kg. COI/T.20/Doc. No. 8-1990, which was published by the International Olive Council, describes the standard method used for the determination of halogenated solvents in olive oil. Unfortunately, this method is cumbersome, has poor repeatability and low automation, and is unsuitable for the detection and analysis of residual halogenated solvents in large quantities of olive oil. At present, no national standard method for determining residual halogenated solvents in olive oil is available in China. Thus, developing simple, efficient, accurate, and stable methods for the determination of residual halogenated solvents in olive oil is imperative. In this paper, a method based on automatic headspace gas chromatography was established for the determination of residual halogenated solvents, namely, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, dibromochloromethane, tetrachloroethylene, and bromoform, in olive oil. The samples were processed as follows. After mixing, 2.00 g (accurate to 0.01 g) of the olive oil sample was added into a 20 mL headspace injection bottle and immediately sealed for headspace gas chromatography analysis. Blank virgin olive oil was used to prepare a standard working solution and the external standard method for quantification. The solvents used in the preparation of halogenated solvent standard intermediates were investigated and methanol was selected as a replacement for N,N-dimethylacetamide to prepare a halogenated solvent standard intermediate owing to its safety. The effects of different injection times (1, 2, 3, 4, 5, 6 s), equilibration temperatures (60, 70, 80, 90, 100, 110, 120 ℃), and equilibration times (4, 5, 8, 10, 20, 30, 40 min) of the headspace sampler on the detection of the residual amounts of the six halogenated solvents were investigated. The optimal injection time and equilibration temperature were 3 s and 90 ℃, respectively. The method demonstrated good analytical performance for the six halogenated solvents when the equilibration time was 30 min. A methodological study was conducted on the optimized method, and the results showed that the six halogenated solvents exhibited good linear relationships in the range of 0.002-0.200 mg/kg, with correlation coefficients of ≥0.9991. The limits of detection (LODs) and quantification (LOQs) of 1,1,1-trichloroethane and bromoform were 0.0006 and 0.002 mg/kg, respectively. The LODs and LOQs of chloroform, carbon tetrachloride, dibromochloromethane, and tetrachloroethylene were 0.0003 and 0.001 mg/kg, respectively. The average recoveries under different spiked levels were 85.53%-115.93%, and the relative standard deviations (n=6) were 1.11%-8.48%. The established method was used to analyze 13 olive oil samples available in the market. Although no halogenated solvents were detected in these samples, a limited number of samples does not represent all olive oils. Hence, monitoring residual halogenated solvents in olive oil remains necessary for its safe consumption. The LOQs of the method for the six halogenated solvents were significantly lower than that of the COI/T.20/Doc. No. 8-1990 standard method (0.02 mg/kg). In addition, the developed method can be conducted under short operation times with high precision and degree of automation as well as good accuracy. Thus, the proposed method is suitable for the determination and analysis of the residues of the six halogenated solvents in large batches of olive oil samples.


Subject(s)
Tetrachloroethylene , Trichloroethanes , Olive Oil , Solvents/analysis , Gas Chromatography-Mass Spectrometry/methods , Tetrachloroethylene/analysis , Chloroform/analysis , Carbon Tetrachloride/analysis , Chromatography, Gas/methods , Trihalomethanes
3.
iScience ; 27(3): 109279, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38482490

ABSTRACT

Wax gland complex (WGC) serves as the primary generator of beeswax; however, the dynamic biological function in wax secretion remains unclear. To elucidate the developmental mechanism of WGC, we conducted a comprehensive analysis to reveal the variations in proteins and metabolites among the newly emerged bee (NEB), wax-secreting bee (WSB), and overaged bee (OAB). We identified 3,295 proteins and 159 metabolites in WGC. Specifically, NEB elevated the expression of ribosomal proteins for preparing the glandular organ. While WSB promoted the size of epidermal cells and oenocytes, the enrichment of fatty acids and energy metabolism in WSB suggested a strong ability in wax synthesis. In OAB, disorganized wax tubules, and up-regulated cysteine proteases reflected the gland degeneration. These findings highlight the dynamic changes in the level of molecule and morphological structure in WGC, offering valuable insights into the development and mechanism of wax secretion in honeybees and other wax insects.

4.
Food Sci Biotechnol ; 33(4): 981-990, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371677

ABSTRACT

Consuming pomegranate juice (PJ) is beneficial for hypertensive regulation because of the phenolic compounds in PJ and their inhibitory activity on angiotensin-I-converting enzyme (ACE). To better utilize bioactive function of food, microorganism fermentation has been adopted to alter phenolic metabolism. This study confirms that even under in vitro digestion, fermented PJ (FPJ) maintains higher ACE inhibitory activity than that of PJ. The main phenolic compounds in PJ were compared either under fermentation or in vitro digestion. This study finds that fermentation promotes antioxidant capacity of PJ. The chemical properties of FPJ are evaluated and the corresponding relationship with bioactivities is analyzed. A sensory evaluation comparison is conducted between FPJ and PJ, furnishing interesting information for consumers. This study highlights the relationship between ACE inhibitory activity of PJ and phenolic composition under fermentation and in vitro digestion, providing novel insights for diet regulation of phenolic-rich FPJ in ACE inhibition therapy. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01388-w.

5.
Int Immunopharmacol ; 129: 111590, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38316083

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive disease that can metastasize to distant organs such as the lung and liver. However, the exact mechanisms underlying PDAC metastasis remain unclear. Tumor-associated macrophages (TAMs) have been shown to play a critical role in cancer initiation, progression, outgrowth, and metastasis, likely through their interaction with cancer cells via extracellular vesicles known as exosomes. However, the precise mechanisms of this interaction are not fully understood. METHODS: In this study, we obtained TAMs from PDAC patients and isolated exosomes from their culture medium. We characterized these exosomes and analyzed their miRNA expression profiles using Multiplex miRNA assays with FirePlex particle technology. Additionally, we conducted in vitro co-culture experiments between PDAC cells and conditioned media or exosomes from TAMs to investigate the crosstalk between these cells via exosomes. Furthermore, we evaluated the in vivo lung metastasis of PDAC cells treated with TAM-derived exosomes in athymic nude mice. RESULTS: TAMs from PDAC patients promoted the invasiveness and migratory potential of PDAC cells, partially through the effects of TAM-derived exosomes. Specifically, we identified two microRNAs, miR-202-5p and miR-142-5p, which were transferred from TAM-derived exosomes to PDAC cells, resulting in the suppression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and promoting their invasiveness and migratory potential. We also found that distal metastasis was increased in PDAC cells treated with TAM-derived exosomes, partially through miR-202-5p and miR-142-5p. CONCLUSIONS: Exosomal transfer of miR-202-5p and miR-142-5p plays a significant role in conferring invasiveness and migratory potential to PDAC cells. Targeting exosome communication may represent a promising new therapeutic strategy for reducing cancer metastasis of PDACs.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Animals , Mice , MicroRNAs/genetics , Mice, Nude , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Macrophages , Cell Line, Tumor
6.
Int J Biol Macromol ; 262(Pt 2): 129207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185305

ABSTRACT

Nanozymes with oxidase or peroxidase-mimicking activity have emerged as a promising alternative for disinfecting resistant pathogens. However, further research and clinical applications of nanozymes are hampered by their low in vivo biosafety and biocompatibility. In this study, inulin-confined gold nanoparticles (IN@AuNP) are synthesized as an antibacterial agent via a straightforward in situ reduction of Au3+ ions by the hydroxyl groups in inulin. The IN@AuNP exhibits both peroxidase-mimicking and oxidase-mimicking catalytic activities, of which the maximum reaction velocity (Vmax) for H2O2 is 2.66 times higher than that of horseradish peroxidase. IN@AuNP can catalyze the production of reactive oxygen species (ROS), resulting in effective antibacterial behavior against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Abundant hydroxyl groups retained in inulin endow the nanozyme with high adhesion to bacteria, reducing the distance between the captured bacteria and ROS, achieving an antibacterial ratio of 100 % within 1 h. Importantly, due to the natural biosafety and non-absorption of the dietary fiber inulin, as well as the inability of inulin-trapped AuNP to diffuse, the IN@AuNP exhibits high biosafety and biocompatibility under physiological conditions. This work is expected to open a new avenue for nanozymes with great clinical application value.


Subject(s)
Inulin , Metal Nanoparticles , Inulin/pharmacology , Anti-Bacterial Agents/pharmacology , Gold/pharmacology , Reactive Oxygen Species , Adhesives , Hydrogen Peroxide , Containment of Biohazards , Peroxidases , Escherichia coli
7.
Nutr Res ; 122: 55-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185061

ABSTRACT

Hyperglycemia-related retinopathy is a disease with a high blindness rate. Recent reports indicate that many flavonol compounds have the potential to prevent the occurrence of disease in the retina by regulating the gut-retina axis. Here, we hypothesized that quercetin could alleviate the symptoms of retinopathy. To clarify the mechanism, Sprague Dawley rats were fed a high-fat diet containing quercetin for 12 weeks and injected with streptozotocin in the ninth week. Additionally, neomycin and ampicillin were used to establish a pseudo-sterile rat model. Afterward, changes in the retina were investigated by using electroretinogram and optical coherence tomography. Blood and tissue samples were collected and biochemical components were analyzed. The extent of intestinal injury was determined via hematoxylin-eosin staining. Microbial community structure was analyzed by using 16S ribosomal RNA sequencing. Finally, the expression of genes was analyzed using real-time polymerase chain reaction. The results showed that quercetin reduced the decline in electroretinography amplitude and outer nuclear layer thickness, increased the activities of antioxidant enzymes, decreased the contents of proinflammatory factors and blood glucose, enhanced the concentration of insulin, and inhibited intestinal dysbiosis and improved gut morphology. Importantly, the underexpression of nuclear factor erythroid-2 related factor 2 in the retina was reversed by quercetin. However, trend changes were no longer significant in most of the indicators after antibiotic treatment. In summary, quercetin has therapeutic effects on retinopathy by regulating the gut-retina axis and nuclear factor erythroid-2 related factor 2 pathway, and the presence of gut microbiota helps quercetin exert its effects on the retina.


Subject(s)
Hyperglycemia , Retinal Diseases , Rats , Animals , Rats, Sprague-Dawley , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Hyperglycemia/metabolism
8.
Food Sci Nutr ; 11(10): 5989-5998, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823115

ABSTRACT

Nervonic acid (NA) is a kind of ultra-long-chain monounsaturated fatty acid, which can repair nerve cell damage caused by oxidative stress. Alzheimer's disease (AD) is a nervous system disease and often accompanied by the decline of learning and memory capacity. In this study, the combined dose of D-galactose/AlCl3 was used to establish a mouse model of AD. Meanwhile, the mice were treated with different doses of NA (10.95 and 43.93 mg/kg). The results showed that NA delayed the decline of locomotion and learning ability caused by D-galactose/AlCl3, increased the activity of total superoxide dismutase, catalase, glutathione peroxidase, and reduced the content of malondialdehyde in vivo. Besides, NA reduced the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), aspartate aminotransferase, alanine aminotransferase, increased the levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, alleviated the cell morphology damage induced by D-galactose/AlCl3 in hippocampus and liver tissue. Furthermore, the intervention of NA upregulated the expression levels of PI3K, AKT, and mTOR genes and downregulated the expression levels of TNF-α, IL-6, and IL-1ß genes. Therefore, we speculate the intervention of NA could be an effective way in improving cognitive impairment through the activation of PI3K signaling pathway. These results suggest that NA has the potential to be developed as antioxidant drug for the prevention and early therapy of AD.

9.
Foods ; 12(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37509753

ABSTRACT

Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.

10.
J Biochem Mol Toxicol ; 37(9): e23406, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392398

ABSTRACT

Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2'-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , MicroRNAs , Humans , Phosphoglycerate Mutase/genetics , Adenocarcinoma of Lung/genetics , RNA, Circular/genetics , Cell Proliferation , Lung Neoplasms/genetics , MicroRNAs/genetics , Cell Line, Tumor
11.
J Agric Food Chem ; 71(14): 5733-5744, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36996454

ABSTRACT

Pomegranate peel polyphenols (PPPs) and inulin have been reported to have lipid-lowering effects. Here, the effects of PPPs combined with inulin on obesity traits and the change of the gut microbiota, short-chain fatty acids (SCFAs), and serum metabolomics profiles in rats with a high-fat diet (HFD) were investigated. According to the experimental results, PPPs were most effective in reducing the body weight and serum and liver lipid levels. Besides, PPPs ameliorated the disorder of gut microbiota, in particular, the enrichment of SCFA producers, such as Lactobacillus, Roseburia, Christensenellaceae_R-7_group, Ruminococcaceae_UCG-005, Bacteroides, and Allobaculum, and the depletion of the Blautia and unclassified Lachnospiraceae population. PPPs also regulated the levels of metabolites changed by HFD feeding via tryptophan metabolism, valine, leucine, and isoleucine biosynthesis, and arachidonic acid metabolism pathways. The correlation analysis showed that PPPs remitted HFD-induced elevation in triglycerides (TGs), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) levels and lowered high-density lipoprotein (HDL) levels through regulating the gut microbiota, SCFAs, and related metabolites. These findings elucidated that PPPs have a good anti-obesity effect. This study extends the understanding of PPP effects on high-fat-induced obesity, which includes the relationship among gut microbiota, SCFAs, serum metabolites, and TG-, IL-6- and TNF-α- lowering and HDL-elevating functions.


Subject(s)
Gastrointestinal Microbiome , Pomegranate , Rats , Animals , Inulin/pharmacology , Polyphenols/pharmacology , Interleukin-6/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Obesity/metabolism , Triglycerides , Fatty Acids, Volatile/metabolism
12.
Skin Res Technol ; 29(3): e13300, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36973989

ABSTRACT

BACKGROUND: The treatment and curative effect evaluation of localized scleroderma (LS) still perplexes many clinical workers. PURPOSE: To investigate the efficiacy of methotrexate in the treatment of LS by the evaluation of ultrasonography. METHODS: A prospective study enrolled 10 patients treated with MTX for at least 6 months was conducted. Treatment outcome was evaluated by a clinical score and 15-MHz ultrasonography. Safety assessment included the monitoring of adverse drug reactions and clinical laboratory examinations. RESULTS: Eight of the 10 patients achieved clinical remission only with MTX. One patient was relieved after MTX combined with corticosteroids, while another one does not improve after the treatment of mycophenolate mofetil and corticosteroids. The effective rate of MTX is 80%. Nine patients were significantly improved with a decrease of the Localized Scleroderma Cutaneous Assessment Tool (the mean score of the LoSCAT cutaneous activity dropped from 5.2 to 1.0, p < 0.001, the mean score of the LS cutaneous damage dropped from 4.3 to 2.3, p = 0.002). The average difference of thickness between skin lesions and normal skin evaluated by ultrasonography decreased from 0.13 cm to 0.04 cm (p = 0.009) in eight patients. No serious adverse reactions occurred. CONCLUSION: Methotrexate is a safe and effective treatment for patients with LS. Ultrasonography can be considered as an efficient assessment tool for evaluation LS.


Subject(s)
Dermatologic Agents , Methotrexate , Scleroderma, Localized , Humans , Methotrexate/adverse effects , Methotrexate/therapeutic use , Prospective Studies , Scleroderma, Localized/diagnostic imaging , Scleroderma, Localized/drug therapy , Scleroderma, Localized/pathology , Skin/diagnostic imaging , Skin/pathology , Treatment Outcome , Ultrasonography , Dermatologic Agents/adverse effects , Dermatologic Agents/therapeutic use , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Mycophenolic Acid/adverse effects , Mycophenolic Acid/therapeutic use , Drug Therapy, Combination
13.
Sci Rep ; 13(1): 1563, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36709378

ABSTRACT

Temperature has an important influence on plant growth and development. In protected agriculture production, accurate prediction of temperature environment is of great significance. However, due to the time series, nonlinear and multi coupling characteristics of temperature, it is difficult to achieve accurate prediction. We proposed a method for building a solar greenhouse temperature prediction model based on a timeseries analysis, that considers the time series characteristics and dynamic temperature changes in the greenhouse system. The method would predict the temperature of greenhouse, and provide reference for the temperature change law in protected agriculture. A parameter analysis was performed on the nonlinear autoregressive exogenous (NARX) neural network, and a solar greenhouse temperature time series prediction model was established using the NARX regression neural network. The results showed that the proposed model depicted a maximum absolute error of 0.67 °C, and model correlation coefficient of 0.9996. Compared with the wavelet and BP neural networks, the NARX regression neural network accurately predicted and significantly outperformed in the solar greenhouse temperature prediction model. Moreover, the prediction model can accurately predict temperature trends within the solar greenhouse and is pivotal to obtaining precise control of solar greenhouse temperature.

14.
Parasite Immunol ; 45(3): e12969, 2023 03.
Article in English | MEDLINE | ID: mdl-36645298

ABSTRACT

Bullous pemphigoid (BP) with scabies is a condition rarely encountered in clinical practice, and when it is encountered, it is often due to the use of immunosuppressants. This paper is a report on a patient with BP and scabies, who developed scabs after taking dexamethasone. It should be noted that BP antibody is necessary, which can distinguish BP with scabies and bullous scabies, and the treatment options for the two diseases are different.


Subject(s)
Pemphigoid, Bullous , Scabies , Humans , Antibodies , Norway , Pemphigoid, Bullous/diagnosis , Pemphigoid, Bullous/drug therapy , Scabies/complications , Scabies/diagnosis , Scabies/drug therapy , Female , Aged, 80 and over
15.
Food Chem ; 404(Pt B): 134745, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36444086

ABSTRACT

Current research on plant food-derived phenolic compounds as angiotensin-I-converting enzyme (ACE) inhibitors has been well documented. Pomegranate juice (PJ) has been reported positively contributed to ACE inhibition. Microbial fermentation is a preferable technique to regulate the biotransformation of phenolic compounds and their bioaccessibility, therefore promoting the ACE inhibitory activity in plant food with antihypertension potential. In this study, the remarkable improvements of ACE inhibitory activity and antioxidant capacity in Lactobacillus plantarum fermented PJ were observed. A consecutive study of phenolic compounds biotransformation, ACE inhibition kinetics and structure-activity relationship were performed. This study firstly highlights the relationship between the enhanced ACE inhibitory activity in fermented PJ and the biotransformation of phenolic compounds, providing a new way to reinforce plant food ACE inhibition potential by microbial fermentation.


Subject(s)
Antihypertensive Agents , Pomegranate , Peptidyl-Dipeptidase A , Biotransformation , Phenols , Angiotensin-Converting Enzyme Inhibitors , Angiotensins
16.
Int J Biol Macromol ; 225: 848-860, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36414079

ABSTRACT

Age-based division of labor among workers is a fundamental life-history trait of many social insects, including the Western honey bee, Apis mellifera L. Extensive studies of the causation of the most pronounced transition from performing tasks in the nest to outside foraging indicate hormonal regulation of complex physiological changes. However, the proximate neurobiological mechanisms that cause the behavioral repertoire to change are still not understood and require novel approaches to be fully characterized. Thus, we established the first comprehensive monoclonal antibody microarray in honey bees with 16,320 antibodies to directly identify proteins in the brain that regulate the transition to foraging. Major royal jelly protein (MRJP) 1 and MRJP3 were identified as potential protein effectors and further investigated. A series of experimental manipulations of the workers' behavioral transition led to changes in MRJP1 and MRJP3 quantities in accordance with their presumed functional role. Injection of MRJPs into the brain resulted in increased task-reversal from foraging to nursing and decreased task-progression from nursing to foraging, while the latter was increased by injection with MRJP antibodies. Finally, down-regulation of MRJP1 and MRJP3 expression via RNAi injection into the brain increased the transition from in-hive nursing to outside foraging, confirming a causal role of these two proteins in the proximate regulation of behavior and life-history of honey bee workers. Interaction partners of MRJP1 and MRJP3 in the honey bee brain included other regulators of honey bee behavior and life history. Thus, our transformative methodological advancement of proteome analysis in honey bees reveals novel regulators of honey bee behavior, extends our understanding of the functional pleiotropy of MRJPs, and supports a general nutrition-based model of the regulation of the age-based division of labor in honey bees.


Subject(s)
Fatty Acids , Insect Proteins , Bees , Animals , Insect Proteins/metabolism , Behavior, Animal
17.
J Ethnopharmacol ; 302(Pt A): 115901, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36336220

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Toxicodendron vernicifluum (Stokes) F.A. Barkley (RVS) is an economic tree species and widely distributed in East Asia. Wood parts and raw lacquers of RVS have been used in coatings, herbal medicines or food supplements, and the leaves, flowers, roots, and fruits of RVS are also widely used in medicine traditionally. Lacquer seed oil (LSO) has potential health benefits and has not previously been evaluated for safety. AIM OF THE STUDY: The aim of the present study was to investigate the toxicological potential of LSO by acute and subchronic toxicity tests. MATERIALS AND METHODS: The characterization of fatty acids of the LSO was carried out by gas chromatography. In the acute toxicity study, LSO was administered at single doses of 5000 or 10000 mg/kg by oral gavage. The subchronic toxicity study was conducted by daily oral administration of LSO at doses of 1250, 2500 and 5000 mg/kg/day for 30 consecutive days. The animals were evaluated for clinical observations, body weight, organ weight, feed consumption, biochemical and hematological parameters, and liver, lung, and kidney histology. RESULTS: There were no mortality and toxic changes were observed in acute toxicity study. The results of subchronic toxicity showed no toxicologically significant changes in clinical observations, body weight, organ weight, biochemical or hematological parameters. Histopathologic results indicated slight hepatic steatosis and inflammatory infiltration in the rats of 5000 mg/kg/day LSO treated group. However, the histopathologic observation was not confirmed by hepatic biochemical analysis. CONCLUSIONS: These results suggested that the LD50 of LSO is over 10000 mg/kg and LSO is non-toxic for SD rats in acute toxicity study. The no observed adverse effect level (NOAEL) of LSO in rats is considered to be 5000 mg/kg/day, and liver is the potential target organ of LSO for 30-day subchronic toxicity study.


Subject(s)
Toxicodendron , Rats , Animals , Lacquer , Toxicity Tests, Acute , Rats, Sprague-Dawley , Toxicity Tests, Subchronic , Seeds , Organ Size , Body Weight , Plant Extracts/pharmacology
18.
Sensors (Basel) ; 22(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501960

ABSTRACT

Aquaponics is a green and efficient agricultural production model that combines aquaculture and vegetable cultivation. It is worth looking into optimizing the proportion of fish and plants to improve the quality and yield. However, there is little non-destructive monitoring of plant growth in aquaponics monitoring systems currently. In this paper, based on the Internet of Things technologies, a monitoring system is designed with miniaturization, modularization, and low-cost features for cultivation-breeding ratio research. The system can realize remote monitoring and intelligent control of parameters needed to keep fish and plants under optimal conditions. First, a 32-bit chip is used as the Microcontroller Unit to develop the intelligent sensing unit, which can realize 16 different data acquisitions as stand-alone extensible modules. Second, to achieve plant data acquisition and upload, the Raspberry Pi embedded with image processing algorithms is introduced to realize edge-computing. Finally, all the collected data is stored in the Ali-cloud through Wi-Fi and a WeChat Mini Program is designed to display data and control devices. The results show that there is no packet loss within 90 m for wireless transmission, and the error rate of environment parameters is limited to 5%. It was proven that the system is intelligent, flexible, low-cost, and stable which is suitable for small-scale aquaponics well.


Subject(s)
Electrocardiography , Plant Breeding , Animals , Aquaculture/methods , Algorithms
19.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: mdl-36346221

ABSTRACT

Reproduction involves the investment of resources into offspring. Although variation in reproductive effort often affects the number of offspring, adjustments of propagule size are also found in numerous species, including the Western honey bee, Apis mellifera. However, the proximate causes of these adjustments are insufficiently understood, especially in oviparous species with complex social organization in which adaptive evolution is shaped by kin selection. Here, we show in a series of experiments that queens predictably and reversibly increase egg size in small colonies and decrease egg size in large colonies, while their ovary size changes in the opposite direction. Additional results suggest that these effects cannot be solely explained by egg-laying rate and are due to the queens' perception of colony size. Egg-size plasticity is associated with quantitative changes of 290 ovarian proteins, most of which relate to energy metabolism, protein transport, and cytoskeleton. Based on functional and network analyses, we further study the small GTPase Rho1 as a candidate regulator of egg size. Spatio-temporal expression analysis via RNAscope and qPCR supports an important role of Rho1 in egg-size determination, and subsequent RNAi-mediated gene knockdown confirmed that Rho1 has a major effect on egg size in honey bees. These results elucidate how the social environment of the honey bee colony may be translated into a specific cellular process to adjust maternal investment into eggs. It remains to be studied how widespread this mechanism is and whether it has consequences for population dynamics and epigenetic influences on offspring phenotype in honey bees and other species.


Honey bees are social insects that live in large colonies containing tens of thousands of individuals. The vast majority of bees are sterile females known as worker bees. They perform most of the activities essential for the survival of the colony, including foraging for pollen and nectar and taking care of eggs and larvae. An individual known as the queen bee is the mother of the colony and is normally the only female who reproduces. She has two massive ovaries and can produce up to two thousand eggs per day. Previous studies indicate that the number and size of the eggs vary according to the conditions inside the colony and in the surrounding environment. Larger eggs contain more nutrients so the resulting embryos may have a better chance of survival. However, producing bigger eggs requires the queen to invest more resources, which is costly to the colony as a whole. It remains unclear which mechanisms regulate the size of honey bee eggs. To address this question, Han, Wei, Amiri et al. carried out a series of experiments on the Western honey bee, Apis mellifera. The experiments showed that queen bees in small colonies had smaller ovaries and produced bigger eggs than those in large colonies. The difference in egg size appeared to be due to the queen bee's perception of the size of the colony, rather than its actual size. An approach called proteomics revealed that 290 ovarian proteins were produced at different levels in big-egg producing ovaries compared to small-egg producing ovaries. Further experiments suggested that a protein known as Rho1 regulates the size of the eggs the queen bees produce. These findings provide an explanation for how the social environment of the Western honey bee colony may influence the queen bee's reproductive investment at the molecular level. Further studies to confirm and expand on this work may help to improve honey bee health and also contribute to our general understanding of this life stage in bees and other insects.


Subject(s)
Oviposition , Reproduction , Female , Bees , Animals , Ovary , Eggs
20.
Front Cell Dev Biol ; 10: 1006964, 2022.
Article in English | MEDLINE | ID: mdl-36225314

ABSTRACT

Protein phosphorylation is known to regulate a comprehensive scenario of critical cellular processes. However, phosphorylation-mediated regulatory networks in honey bee embryogenesis are mainly unknown. We identified 6342 phosphosites from 2438 phosphoproteins and predicted 168 kinases in the honey bee embryo. Generally, the worker and drone develop similar phosphoproteome architectures and major phosphorylation events during embryogenesis. In 24 h embryos, protein kinases A play vital roles in regulating cell proliferation and blastoderm formation. At 48-72 h, kinase subfamily dual-specificity tyrosine-regulated kinase, cyclin-dependent kinase (CDK), and induced pathways related to protein synthesis and morphogenesis suggest the centrality to enhance the germ layer development, organogenesis, and dorsal closure. Notably, workers and drones formulated distinct phosphoproteome signatures. For 24 h embryos, the highly phosphorylated serine/threonine-protein kinase minibrain, microtubule-associated serine/threonine-protein kinase 2 (MAST2), and phosphorylation of mitogen-activated protein kinase 3 (MAPK3) at Thr564 in workers, are likely to regulate the late onset of cell proliferation; in contrast, drone embryos enhanced the expression of CDK12, MAPK3, and MAST2 to promote the massive synthesis of proteins and cytoskeleton. In 48 h, the induced serine/threonine-protein kinase and CDK12 in worker embryos signify their roles in the construction of embryonic tissues and organs; however, the highly activated kinases CDK1, raf homolog serine/threonine-protein kinase, and MAST2 in drone embryos may drive the large-scale establishment of tissues and organs. In 72 h, the activated pathways and kinases associated with cell growth and tissue differentiation in worker embryos may promote the configuration of rudimentary organs. However, kinases implicated in cytoskeleton organization in drone embryos may drive the blastokinesis and dorsal closure. Our hitherto most comprehensive phosphoproteome offers a valuable resource for signaling research on phosphorylation dynamics in honey bee embryos.

SELECTION OF CITATIONS
SEARCH DETAIL
...