Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Phys Rev Lett ; 132(21): 219602, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856297
2.
Transl Pediatr ; 13(4): 610-623, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38715665

ABSTRACT

Background: Adolescent idiopathic scoliosis (AIS) is a prevalent spinal disorder that can potentially influence bone mineral density (BMD), thereby increasing the susceptibility to osteoporosis and fractures. Early identification of reduced bone mass in AIS patients is crucial for clinicians to develop effective preventive strategies against fractures. This study aims to elucidate the correlation between BMD, as measured by quantitative computed tomography (QCT), and various clinical parameters in AIS, including the Cobb angle, vertebral rotation, and the Risser sign. By revealing the potential influences of these factors on BMD, our findings aim to assist clinicians in making informed and timely decisions regarding AIS management, particularly in situations where QCT is unavailable. Methods: A cross-sectional study was conducted on 129 adolescents with AIS who were enrolled at The Third People's Hospital of Chengdu, Sichuan, China, between 2021 and 2023. QCT was employed to assess BMD and vertebral rotation. The Cobb angle and Risser sign were determined through radiographic evaluation, while anthropometric and biochemical data were also collected. Statistical analyses, including Pearson and Spearman rank correlation and regression models, were used to investigate the associations between BMD and clinical measures. Results: A significant negative correlation was found between BMD and Cobb angle (coefficient =-0.663; P<0.001), as well as between BMD and vertebral rotation angle (coefficient =-0.442; P<0.001) in patients with AIS. BMD was positively correlated with increased height (coefficient =0.355; P<0.001) and BMI (coefficient =0.199; P=0.02). A significant association was detected between BMD and the Risser sign (P=0.002). No significant sex-based differences in BMD were observed (P=0.052). No significant correlations were observed between BMD and levels of potassium (K), calcium (Ca), inorganic phosphate (P), and iron (Fe) (P>0.05 all). The binary logistic regression analysis identified Cobb angle as a risk factor of lower BMD presence in AIS patients (coefficient =0.072; OR=1.075; P<0.001). Furthermore, the receiver operating characteristic (ROC) analysis of the combined model for predicting low BMD in AIS patients yielded an area under the curve (AUC) value of 0.900, with an optimal threshold determined as 0.398. The sensitivity and specificity were calculated as 0.816 and 0.900, respectively, indicating a robust predictive capacity. Conclusions: This study highlights the significant inverse correlation observed between BMD measured by QCT and both Cobb angle and vertebral rotation angle in patients with AIS. Furthermore, a notable variation in BMD was found across different Risser sign categories, with BMD values generally increasing as Risser sign levels increased. Additionally, our findings indicate that Cobb angle serves as a risk factor for low BMD presence. Moreover, a combined model was developed to predict the likelihood of low BMD occurrence in AIS patients.

3.
J Magn Reson Imaging ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807354

ABSTRACT

BACKGROUND: A consensus on normal atrial deformation measurements by feature-tracking cardiac MRI remained absent. PURPOSE: Provide reference ranges for atrial strain parameters in normal subjects, evaluating the influence of field strength and analysis software on the measurements. STUDY TYPE: Meta-analysis. POPULATION: 2708 subjects from 42 studies undergoing cardiac MRI. ASSESSMENT: A systematic search was conducted from database (PubMed, Web of Science, ScienceDirect, and EMBASE) inception through August 2023. The random-effects model was used to pool the means of biatrial strain parameters. Heterogeneity and clinical variable effects were assessed. Strain measurements among different field strengths and analysis software were compared. STATISTICAL TESTS: The inverse-variance method, Cochrane Q statistic, and I2 value, meta-regression analysis, and ANOVA were used; P < 0.05 was considered statistically significant. RESULTS: The pooled means of left atrial (LA) total strain (εs), passive strain (εe), and active strain (εa) were 37.46%, 22.73%, and 16.24%, respectively, and the pooled means of LA total strain rate (SRs), passive strain rate (SRe), and active strain rate (SRa) were 1.66, -1.95, and -1.83, indicating significant heterogeneity. The pooled means of right atrial (RA) εs, εe, and εa were 44.87%, 26.05%, and 18.83%. RA SRs, SRe, and SRa were 1.66, -1.95, and -1.83, respectively. The meta-regression identified age as significantly associated with LA εs, εe and SRe, field strength was associated with LA SRa (all P < 0.05). ANOVA revealed differences in LA εa and SRa among different analysis software and in LA εs and all LA strain rates (all P < 0.05) among field strengths. No significant differences were identified in RA strain across analysis software (RA strain: P = 0.145-0.749; RA strain rates: P = 0.073-0.744) and field strengths (RA strain: P = 0.641-0.794; RA strain rates: P = 0.204-0.458). DATA CONCLUSION: This study demonstrated the pooled reference values of biatrial strain. Age, analysis software, and field strength were attributed to differences in LA strain, whereas RA strain showed consistency across different field strengths and analysis software. Limited study subjects may account for the absence of influence on RA strain. TECHNICAL EFFICACY: Stage 5.

4.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790629

ABSTRACT

Eriocheir sinensis, a key species in China's freshwater aquaculture, is threatened by various diseases, which were verified to be closely associated with oxidative stress. This study aimed to investigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced oxidative stress to understand the biological processes behind these diseases. Crabs were exposed to different concentrations of H2O2 and their antioxidant enzyme activities and gene expressions for defense and immunity were measured. Results showed that activities of antioxidant enzymes-specificallysuperoxide dismutase (SOD), catalase (CAT), total antioxidant capacity(T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-Px)-varied with exposure concentration and duration, initially increasing then decreasing. Notably, SOD, GSH-Px, and T-AOC activities dropped below control levels at 96 h. Concurrently, oxidative damage markers, including malondialdehyde (MDA), H2O2, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, increased with exposure duration. The mRNA expression of SOD, CAT, and GSH-Px also showed an initial increase followed by a decrease, peaking at 72 h. The upregulation of phenoloxidaseloxidase (proPO) and peroxinectin (PX) was also detected, but proPO was suppressed under high levels of H2O2. Heat shock protein 70 (HSP70) expression gradually increased with higher H2O2 concentrations, whereas induced nitrogen monoxide synthase (iNOS) was upregulated but decreased at 96 h. These findings emphasize H2O2's significant impact on the crab's oxidative and immune responses, highlighting the importance of understanding cellular stress responses for disease prevention and therapy development.

5.
ChemSusChem ; : e202400281, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573033

ABSTRACT

Lithium metal batteries (LMBs) enable much higher energy density than lithium-ion batteries (LIBs) and thus hold great promise for future transportation electrification. However, the adoption of lithium metal (Li) as an anode poses serious concerns about cell safety and performance, which has been hindering LMBs from commercialization. To this end, extensive effort has been invested in understanding the underlying mechanisms theoretically and experimentally and developing technical solutions. In this review, we devote to providing a comprehensive review of the challenges, characterizations, and interfacial engineering of Li anodes in both liquid and solid LMBs. We expect that this work will stimulate new efforts and help peer researchers find new solutions for the commercialization of LMBs.

6.
Curr Issues Mol Biol ; 46(4): 3342-3352, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38666939

ABSTRACT

Increasing the soybean-planting area and increasing the soybean yield per unit area are two effective solutions to improve the overall soybean yield. Northeast China has a large saline soil area, and if soybeans could be grown there with the help of isolated saline-tolerant rhizobia, the soybean cultivation area in China could be effectively expanded. In this study, soybeans were planted in soils at different latitudes in China, and four strains of rhizobia were isolated and identified from the soybean nodules. According to the latitudes of the soil-sampling sites from high to low, the four isolated strains were identified as HLNEAU1, HLNEAU2, HLNEAU3, and HLNEAU4. In this study, the isolated strains were identified for their resistances, and their acid and saline tolerances and nitrogen fixation capacities were preliminarily identified. Ten representative soybean germplasm resources in Northeast China were inoculated with these four strains, and the compatibilities of these four rhizobium strains with the soybean germplasm resources were analyzed. All four isolates were able to establish different extents of compatibility with 10 soybean resources. Hefeng 50 had good compatibility with the four isolated strains, while Suinong 14 showed the best compatibility with HLNEAU2. The isolated rhizobacteria could successfully establish symbiosis with the soybeans, but host specificity was also present. This study was a preliminary exploration of the use of salinity-tolerant rhizobacteria to help the soybean nitrogen fixation in saline soils in order to increase the soybean acreage, and it provides a valuable theoretical basis for the application of saline-tolerant rhizobia.

7.
Sci Rep ; 14(1): 5487, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448556

ABSTRACT

This study addresses the escalating risk of high-speed railway (HSR) infrastructure in China, amplified by climate warming, increased rainfall, frequent extreme weather, and geohazard events. Leveraging a georeferenced dataset of recent HSR defects obtained through an extensive literature review, we employ machine learning techniques for a quantitative multi-defect risk assessment. Climatic, geomorphological, geohydrological, and anthropogenic variables influencing HSR subgrade safety are identified and ranked. Climatic factors significantly impact frost damage and mud pumping, while geomorphological variables exhibit greater influence on settlement and uplift deformation defects. Notably, frost damage is prevalent in the northeast and northwest, mud pumping along the southeast coast, and settlement and uplift deformation in the northwest and central areas. The generated comprehensive risk map underscores high-risk zones, particularly the Menyuan Hui Autonomous and Minle County sections of the Lanzhou-Urumqi HSR, emphasizing the need for focused attention and preventive actions to mitigate potential losses and ensure operational continuity.

8.
Polymers (Basel) ; 16(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38475284

ABSTRACT

Polyamide 66 was extensively utilized in various applications contributed by its excellent mechanical performance and outstanding durability. However, its high crystallinity renders it to have low transparency, which seriously limits its application in optical devices. Herein, a highly transparent polyamide (PA) 66-based copolymer was reported using 4,4'-diaminodicyclohexylmethane (PACM), adipic acid, and polyamide 66 salt as the reaction monomers. Wide-angle X-ray diffraction (WAXD) analysis revealed that the crystal phase of the synthesized PA66/PACM6 displayed a clear transition from α to γ as the PACM6 increased accompanied by a decreased intensity in the diffraction peak of the copolymer, whose transmittance was successfully adjusted reaching as high as 92.5% (at 550 nm) when the PACM6 was 40 wt%. Moreover, the copolymer with a higher content of PACM6 exhibited larger toughness. On the other hand, the biaxially oriented films of PA66/PACM6 (20 wt%) were also prepared, and it was found that the transparency of the PA66/PACM6 copolymer could be further enhanced via adjusting the stretching ratio of the film. Furthermore, the mechanical strength of the biaxially oriented PA66/PACM6 was also improved with the increase in the orientation degree in the stretching process, indicating that the physical properties of the transparent PA66 were significantly influenced by its alicyclic structure, and the introduction of PACM into PA66 was capable of effectively improving the optical and crystalline characteristics of PA66, revealing that the synthetic strategy has great potential for guiding the design and development of transparent polyamide materials.

9.
Sci Data ; 11(1): 293, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485997

ABSTRACT

China has the world's longest high-speed rail (HSR) network, marked by dense transportation and complex operations. However, frequent train use coupled with extreme weather conditions has led to rising subgrade issues. Existing railway defect records suffer from inconsistency, hindering direct applicability. Currently, there is a lack of a relevant dataset dedicated to HSR subgrade defects. To bridge this gap, we developed a comprehensive georeferenced dataset that encompasses defect records extracted from peer-reviewed literature published between 1999 and 2023 in China. Rigorous quality control procedures were implemented to eliminate duplicate data and ensure the accuracy of the dataset. The dataset consists of georeferenced records for eight different defects, spanning across 661 locations and categorized at various scales, ranging from provinces to townships. The most commonly reported defect types include subgrade settlement, frost damage, uplift deformation, and mud pumping. This dataset provides a comprehensive map of historical subgrade defects affecting high-speed railways in China. It could facilitate operational risk assessments and the prediction of subgrade performance.

10.
Hum Brain Mapp ; 45(5): e26656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38530116

ABSTRACT

Gray matter (GM) atrophy and white matter (WM) lesions may contribute to cognitive decline in patients with delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning. However, there is currently a lack of evidence supporting this relationship. This study aimed to investigate the volume of GM, cortical thickness, and burden of WM lesions in 33 DNS patients with dementia, 24 DNS patients with mild cognitive impairment, and 51 healthy controls. Various methods, including voxel-based, deformation-based, surface-based, and atlas-based analyses, were used to examine GM structures. Furthermore, we explored the connection between GM volume changes, WM lesions burden, and cognitive decline. Compared to the healthy controls, both patient groups exhibited widespread GM atrophy in the cerebral cortices (for volume and cortical thickness), subcortical nuclei (for volume), and cerebellum (for volume) (p < .05 corrected for false discovery rate [FDR]). The total volume of GM atrophy in 31 subregions, which included the default mode network (DMN), visual network (VN), and cerebellar network (CN) (p < .05, FDR-corrected), independently contributed to the severity of cognitive impairment (p < .05). Additionally, WM lesions impacted cognitive decline through both direct and indirect effects, with the latter mediated by volume reduction in 16 subregions of cognitive networks (p < .05). These preliminary findings suggested that both GM atrophy and WM lesions were involved in cognitive decline in DNS patients following CO poisoning. Moreover, the reduction in the volume of DMN, VN, and posterior CN nodes mediated the WM lesions-induced cognitive decline.


Subject(s)
Carbon Monoxide Poisoning , Cognitive Dysfunction , White Matter , Humans , Carbon Monoxide Poisoning/complications , Carbon Monoxide Poisoning/diagnostic imaging , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Atrophy , Disease Progression
11.
Angew Chem Int Ed Engl ; 63(17): e202400708, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38438333

ABSTRACT

Targeting the trap-assisted non-radiative recombination losses and photochemical degradation occurring at the interface and bulk of perovskite, especially the overlooked buried bottom interface, a strategy of tailored-phase two-dimensional (TP-2D) crystal seed layer has been developed to improve the charge transport dynamics at the buried interface and bulk of perovskite films. Using this approach, TP-2D layer constructed by TP-2D crystal seeds at the buried interface can induce the formation of homogeneous interface electric field, which effectively suppress the accumulation of charge carriers at the buried interface. Additionally, the presence of TP-2D crystal seed has a positive effect on the crystallization process of the upper perovskite film, leading to optimized crystal quality and thus promoted charge transport inside bulk perovskites. Ultimately, the best performing PSCs based on TP-2D layer deliver a power conversion efficiency of 24.58 %. The devices exhibit an improved photostability with 88.4 % of their initial PCEs being retained after aging under continuous 0.8-sun illumination for 2000 h in air. Our findings reveal how to regulate the charge transport dynamics of perovskite bulk and interface by introducing homogeneous components.

12.
Adv Mater ; 36(21): e2309655, 2024 May.
Article in English | MEDLINE | ID: mdl-38517062

ABSTRACT

Surgery is the standard treatment regimen for resectable colorectal cancer (CRC). However, it is very hard to completely remove all cancer cells in clinical practice, leading to the high recurrence rates of the disease. Moreover, the post-surgery tissue adhesion greatly prevents the possibility of reoperation, significantly limiting the long-term surviving of CRC patients. To overcome CRC recurrence and avoid the post-surgery tissue adhesion, this work develops a novel stimulator of interferon genes "STING" membrane based on the coaxial electrospinning technology and hyaluronic acid modification. A reactive oxygen species responsive prodrug of gambogic acid (GB) and a potent STING agonist (CDN) are coloaded in the core-shell structure of the membrane, which endows the loaded drug with sustained and sequential release patterns. The localized delivery of GB and CDN can selectively induce efficient immunogenic cell death of cancer cells and then evoke the systemic anticancer immunity by activating the Cyclic GMP-AMP (cGAMP) synthase/STING pathway. As-designed "STING" membrane not only safely prevents tumor recurrence through the synergistic chemoimmunotherapy but also efficiently avoids the post-surgery tissue adhesion, facilitating the clinical intervention of CRC.


Subject(s)
Colorectal Neoplasms , Membrane Proteins , Neoplasm Recurrence, Local , Xanthones , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Animals , Humans , Membrane Proteins/metabolism , Mice , Neoplasm Recurrence, Local/prevention & control , Xanthones/chemistry , Xanthones/pharmacology , Cell Line, Tumor , Tissue Adhesions/prevention & control , Membranes, Artificial , Prodrugs/chemistry , Prodrugs/pharmacology , Reactive Oxygen Species/metabolism , Hyaluronic Acid/chemistry
13.
J Sci Food Agric ; 104(10): 5896-5906, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38477402

ABSTRACT

BACKGROUND: The structural changes of starch would have a more crucial impact on oil absorption and quality changes in starch-rich fruits and vegetables during frying process with enhanced heat transfer (such as infrared frying). In the present study, the influence of integrated ultrasonic and ethanol (US + ethanol) pretreatment on oil uptake in infrared fried (IF) ginkgo seeds was evaluated regarding modifications in the physicochemical properties of starch. The pretreatment was performed with ultrasonic (40 kHz, 300 W) and ethanol osmotic (95%, v/v) treatment individually or integrated for 40 min. RESULTS: The mass transfer in the pretreatment was facilitated by combined ultrasound and ethanol. The swelling power, solubility, and gelatinization degree of starch was significantly increased. Low-frequency-NMR curves and images revealed that the bound water fraction in ginkgo seeds was increased and the water distribution was homogenized. The results of Fourier transform-infrared spectrum and differential scanning calorimeter revealed that the crystalline regions of starch were reduced and the thermal enthalpy was decreased after US + ethanol pretreatment. The total, surface and structural oil content in IF ginkgo seeds with US + ethanol pretreatment was reduced by 29.10%, 34.52% and 29.73%, respectively. The US + ethanol pretreatment led to a thinner crust layer with increased porosity and smaller-sized pores in the IF ginkgo seeds as observed by stereo microscopy and scanning electron microscopy. CONCLUSION: The changes in structural and physicochemical properties of starch by combined ultrasound and ethanol affect the crust ratio and pore characteristics in fried high-starch fruits and vegetables, thereby reducing oil absorption. © 2024 Society of Chemical Industry.


Subject(s)
Ethanol , Ginkgo biloba , Seeds , Starch , Starch/chemistry , Starch/metabolism , Seeds/chemistry , Ethanol/chemistry , Ginkgo biloba/chemistry , Cooking , Solubility , Plant Oils/chemistry , Ultrasonics , Hot Temperature , Infrared Rays , Spectroscopy, Fourier Transform Infrared
14.
Small ; : e2308456, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342675

ABSTRACT

In order to avoid the time-consuming and laborious identification of tumor-specific antigens (TSAs) during the traditional vaccine fabrication process, a versatile photodynamic therapy (PDT)-based method is developed to construct a whole-tumor antigen tumor vaccine (TV) from surgically resected tumor tissues for personalized immunotherapy. Mucoadhesive nanoparticles containing small-molecular photosensitizer are fabricated and directly co-incubated with suspended tumor cells obtained after cytoreduction surgery. After irradiation with a 405 nm laser, potent immunogenic cell death of cancer cells could be induced. Along with the release of TSAs, the as-prepared TV could activate safe and robust tumor-specific immune responses, leading to efficient suppression of postsurgery tumor recurrence and metastasis. The as-prepared TV cannot only be applied alone through various administration routes but also synergize with immunoadjuvant, chemotherapeutics, and immune checkpoint blockers to exert more potent immune responses. This work provides an alternative way to promote the clinical translation of PDT, which is generally restricted by the limited penetration of light. Moreover, the versatile strategy of vaccine fabrication also facilitates the clinical application of personalized whole-cell tumor vaccines.

15.
Nano Lett ; 24(11): 3369-3377, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38373202

ABSTRACT

Microwave-absorbing materials with regulatable absorption frequency and optical camouflage hold great significance in intelligent electronic devices and advanced stealth technology. Herein, we present an innovative microwave-absorbing foam that can dynamically tune microwave absorption frequencies via a simple mechanical compression while in parallel enabling optical camouflage over broad spectral ranges by adjusting the structural colors. The vivid colors spanning different color categories generated from thin-film interference can be precisely regulated by adjusting the thickness of the conformal TiO2 coatings on Ni/melamine foam. Enhanced interfacial and defect-induced polarizations resulting from the introduction of TiO2 coating synergistically contribute to the dielectric attenuation performance. Consequently, such a foam exhibits exceptional microwave absorption capabilities, and the absorption frequency can be dynamically tuned from the S band to the Ku band by manipulating its compression ratio. Additionally, simulation calculations validate the adjustable electromagnetic wave loss behavior, offering valuable insights for the development of next-generation intelligent electromagnetic devices across diverse fields.

16.
Acta Radiol ; 65(5): 414-421, 2024 May.
Article in English | MEDLINE | ID: mdl-38342993

ABSTRACT

BACKGROUND: Current liver magnetic resonance elastography (MRE) scans often require adjustments to driver amplitude to produce acceptable images. This could lead to time wastage and the potential loss of an opportunity to capture a high-quality image. PURPOSE: To construct a linear regression model of individualized driver amplitude to improve liver MRE image quality. MATERIAL AND METHODS: Data from 95 liver MRE scans of 61 participants, including abdominal missing volume ratio (AMVR), breath-holding status, the distance from the passive driver on the skin surface to the liver edge (Dd-l), body mass index (BMI), and lateral deflection of the passive driver with respect to the human sagittal plane (Angle α), were continuously collected. The Spearman correlation analysis and lasso regression were conducted to screen the independent variables. Multiple linear regression equations were developed to determine the optimal amplitude prediction model. RESULTS: The optimal formula for linear regression models: driver amplitude (%) = -16.80 + 78.59 × AMVR - 11.12 × breath-holding (end of expiration = 1, end of inspiration = 0) + 3.16 × Dd-l + 1.94 × BMI + 0.34 × angle α, with the model passing the F test (F = 22.455, P <0.001) and R2 value of 0.558. CONCLUSION: The individualized amplitude prediction model based on AMVR, breath-holding status, Dd-l, BMI, and angle α is a valuable tool in liver MRE examination.


Subject(s)
Elasticity Imaging Techniques , Liver , Magnetic Resonance Imaging , Humans , Elasticity Imaging Techniques/methods , Male , Female , Linear Models , Liver/diagnostic imaging , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Aged , Breath Holding , Young Adult
17.
ACS Nano ; 18(4): 2750-2762, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38174956

ABSTRACT

The predictive design of flexible and solvent-free polymer electrolytes for solid-state batteries requires an understanding of the fundamental principles governing the ion transport. In this work, we establish a correlation among the composite structures, polymer segmental dynamics, and lithium ion (Li+) transport in a ceramic-polymer composite. Elucidating this structure-property relationship will allow tailoring of the Li+ conductivity by optimizing the macroscopic electrochemical stability of the electrolyte. The ion dissociation from the slow polymer segmental dynamics was found to be enhanced by controlling the morphology and functionality of the polymer/ceramic interface. The chemical structure of the Li+ salt in the composite electrolyte was correlated with the size of the ionic cluster domains, the conductivity mechanism, and the electrochemical stability of the electrolyte. Polyethylene oxide (PEO) filled with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium bis(fluorosulfonyl) imide (LiFSI) salts was used as a matrix. A garnet electrolyte, aluminum substituted lithium lanthanum zirconium oxide (Al-LLZO) with a planar geometry, was used for the ceramic nanoparticle moieties. The dynamics of the strongly bound and highly mobile Li+ were investigated using dielectric relaxation spectroscopy. The incorporation of the Al-LLZO platelets increased the number density of more mobile Li+. The structure of the nanoscale ion-agglomeration was investigated by small-angle X-ray scattering, while molecular dynamics (MD) simulation studies were conducted to obtain the fundamental mechanism of the decorrelation of the Li+ in the LiTFSI and LiFSI salts from the long PEO chain.

18.
Sci Total Environ ; 917: 170393, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280587

ABSTRACT

Hydrogen peroxide (H2O2), a prevalent reactive oxygen species (ROS) found in natural aquatic environments, has garnered significant attention for its potential toxicity in fish. However, the molecular mechanisms underlying this toxicity are not yet comprehensively understood. This study aimed to assess H2O2-induced liver dysfunction in common carp (Cyprinus carpio) and elucidate the underlying molecular mechanisms via biochemical and transcriptomic analyses. Common carp were divided into normal control (NC) and H2O2-treated groups (1 mM H2O2), the latter of which was exposed to H2O2 for 1 h per day over a period of 14 days. Serum biochemical analyses indicated that exposure to H2O2 resulted in moderate liver damage, characterized by elevated alanine aminotransferase (ALT) activity and lowered albumin (Alb) level. Concurrently, H2O2 exposure induced oxidative stress and modified the hepatic metabolic enzyme levels. Transcriptome analysis highlighted that 1358 and 1188 genes were significantly downregulated and upregulated, respectively, in the H2O2-treated group. These differentially expressed genes (DEGs) were significantly enriched in protein synthesis and a variety of metabolic functions such as peptide biosynthetic processes, protein transport, ribonucleoprotein complex biogenesis, oxoacid metabolic processes, and tricarboxylic acid metabolic processes. Dysregulation of protein synthesis is principally associated with the downregulation of three specific pathways: ribosome biogenesis, protein export, and protein processing in the endoplasmic reticulum (ER). Furthermore, metabolic abnormalities were primarily characterized by inhibition of the citrate cycle (TCA) and fatty acid biosynthesis. Significantly, anomalies in both protein synthesis and metabolic function may be linked to aberrant regulation of the insulin signaling pathway. These findings offer innovative insights into the mechanisms underlying H2O2 toxicity in aquatic animals, contributing to the assessment of ecological risks.


Subject(s)
Carps , Liver Diseases , Animals , Hydrogen Peroxide/pharmacology , Carps/metabolism , Oxidative Stress , Gene Expression Profiling , Liver/metabolism , Liver Diseases/metabolism
19.
Anal Chem ; 96(6): 2425-2434, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38291775

ABSTRACT

A high-throughput, rapid, and highly sensitive surface-enhanced Raman spectroscopy (SERS) microarray for screening multiple mycotoxins has been developed on a three-dimensional silver nanoparticle porous silicon (3D AgNP-Psi) SERS substrate, which was easy to be engineered by electrochemical etching and magnetron sputtering technology. The etching current density, etching waveform, and target material for magnetron sputtering have been investigated to obtain an optimal 3D SERS substrate. The optimized 3D AgNP-Psi SERS substrate showed an enhancement factor of 2.3 × 107 at 400 mA/cm2 constant current density etching for 20 s and Ag target magnetron sputtering for 200 nm thickness on the surface of Psi. The simulation electric field distribution showed the near-field enhancement can reach 3× higher than that of AuNPs. A protein microarray has been designed to screen multiple mycotoxins by AuNP Raman tags and a competitive immunoassay protocol on the surface of the 3D SERS substrate. The SERS protein microarray displayed wide linear detection ranges of 0.001-100 ng/mL for ochratoxin A, 0.01-100 ng/mL for aflatoxin B1, 0.001-10 ng/mL for deoxynivalenol, along with pg/mL low limit of detection, good recovery rates, repeatability, and reproducibility. The 3D SERS protein microarray is easily engineered and has a great potential application in medicine, environment, and food industry fields.


Subject(s)
Metal Nanoparticles , Mycotoxins , Mycotoxins/analysis , Silicon/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Reproducibility of Results , Porosity , Spectrum Analysis, Raman/methods , Immunoassay/methods
20.
Hum Reprod Update ; 30(1): 81-108, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37699855

ABSTRACT

BACKGROUND: The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE: This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS: A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES: The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS: A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.


Subject(s)
Abortion, Spontaneous , Pregnancy , Female , Humans , Glycosylation , Placenta/metabolism , Trophoblasts/metabolism , Glycosyltransferases/metabolism , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...