Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
BMC Nephrol ; 25(1): 190, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831279

ABSTRACT

PURPOSE: Some studies have found that the pathological formation of kidney stones is closely related to injury and inflammatory response. Behaviors such as dietary composition, physical activity, obesity and smoking can all affect the body's oxidative stress levels. In order to evaluate the effects of various diets and lifestyles on the body's oxidative and antioxidant systems, an oxidative balance score was developed. To investigate whether the OBS is associated with the development of kidney stones. METHODS: Data were taken from the National Health and Nutrition Examination Survey (NHANES) from 2007-2018, followed by retrospective observational studies. The association between kidney stones and OBS was analyzed using survey-weighted logistic regression by adjusting for demographics, laboratory tests, and medical comorbidity covariates. The oxidative balance score is calculated by screening 16 nutrients and 4 lifestyle factors, including 5 prooxidants and 15 antioxidants, based on prior information about the relationship between oxidation levels in the body and nutrients or lifestyle factors. RESULTS: A total of 26,786 adult participants were included in the study, of which 2,578, or 9.62%, had a history of nephrolithiasis. Weighted logistic regression analysis found an association between OBS and kidney stones. In the fully tuned model, i.e., model 3, the highest quartile array of OBS was associated with the lowest quartile array of OBS (OR = 0.73 (0.57, 0.92)) with the risk of kidney stone (p = 0.01), and was statistically significant and remained relatively stable in each model. At the same time, the trend test in the model is also statistically significant. With the increase of OBS, the OR value of kidney stones generally tends to decrease. CONCLUSIONS: There is an inverse correlation between OBS and kidney stone disease. At the same time, higher OBS suggests that antioxidant exposure is greater than pro-oxidative exposure in diet and lifestyle, and is associated with a lower risk of kidney stones.


Subject(s)
Kidney Calculi , Nutrition Surveys , Oxidative Stress , Humans , Kidney Calculi/epidemiology , Kidney Calculi/metabolism , Kidney Calculi/etiology , Female , Male , Middle Aged , Adult , Retrospective Studies , Antioxidants/metabolism , Life Style , Diet , Aged
2.
Blood Lymphat Cancer ; 14: 31-48, 2024.
Article in English | MEDLINE | ID: mdl-38854627

ABSTRACT

Background: Multiple myeloma (MM), an incurable plasma cell malignancy. The significance of the relationship between natural killer (NK) cell-related genes and clinical factors in MM remains unclear. Methods: Initially, we extracted NK cell-related genes from peripheral blood mononuclear cells (PBMC) of healthy donors and MM samples by employing single-cell transcriptome data analysis in TISCH2. Subsequently, we screened NK cell-related genes with prognostic significance through univariate Cox regression analysis and protein-protein interaction (PPI) network analysis. Following the initial analyses, we developed potential subtypes and prognostic models for MM using consensus clustering and lasso regression analysis. Additionally, we conducted a correlation analysis to explore the relationship between clinical features and risk scores. Finally, we constructed a weighted gene co-expression network analysis (WGCNA) and identified differentially expressed genes (DEGs) within the MM cohort. Results: We discovered that 153 NK cell-related genes were significantly associated with the prognosisof MM patients (P <0.05). Patients in NK cluster A exhibited poorer survival outcomes compared to those in cluster B. Furthermore, our NK cell-related genes risk model revealed that patients with a high risk score had significantly worse prognoses (P <0.05). Patients with a high risk score were more likely to exhibit adverse clinical markers. Additionally, the nomogram based on NK cell-related genes demonstrated strong prognostic performance. The enrichment analysis indicated that immune-related pathways were significantly correlated with both the NK subtypes and the NK cell-related genes risk model. Ultimately, through the combined use of WGCNA and DEGs analysis, and by employing Venn diagrams, we determined that ITM2C is an independent prognostic marker for MM patients. Conclusion: In this study, we developed a novel model based on NK cell-related genes to stratify the prognosis of MM patients. Notably, higher expression levels of ITM2C were associated with more favorable survival outcomes in these patients.

3.
BMC Geriatr ; 24(1): 466, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807058

ABSTRACT

BACKGROUND: With the aging population, the number of individuals with dementia in China is increasing rapidly. This community-based study aimed to investigate the prevalence and risk factors for dementia and mild cognitive impairment (MCI) among older adults in China. METHODS: In this study, 20,070 individuals aged ≥ 65 were recruited between January 1, 2022, and February 1, 2023, from ten communities in Xiamen City, China. We collected data on age, sex, level of education, and medical history, as well as global cognition and functional status. The prevalence of dementia and MCI was examined, and the risk factors for different groups were assessed. RESULTS: The overall prevalence of dementia and MCI was approximately 5.4% (95% confidence interval [CI], 5.1-5.7) and 7.7% (95% CI, 7.4-8.1), respectively. The results also indicated that dementia and MCI share similar risk factors, including older age, female sex, hypertension, and diabetes mellitus. Compared with individuals with no formal education, those with > 6 years of education had an odds ratio for MCI of 1.83 (95% CI, 1.49-2.25). We also found that only 5.5% of the positive participants chose to be referred to the hospital for further diagnosis and treatment during follow-up visits. CONCLUSIONS: This study estimated the prevalence and risk factors for dementia and MCI among individuals aged ≥ 65 years in Southeast China. These findings are crucial for preventing and managing dementia and MCI in China.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Male , Female , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/diagnosis , Aged , China/epidemiology , Dementia/epidemiology , Dementia/diagnosis , Prevalence , Risk Factors , Aged, 80 and over
4.
Front Microbiol ; 15: 1349715, 2024.
Article in English | MEDLINE | ID: mdl-38495513

ABSTRACT

Background: Resistance to anti-tuberculous drugs is a major challenge in the treatment of tuberculosis (TB). We aimed to evaluate the clinical availability of nanopore-based targeted next-generation sequencing (NanoTNGS) for the diagnosis of drug-resistant tuberculosis (DR-TB). Methods: This study enrolled 253 patients with suspected DR-TB from six hospitals. The diagnostic efficacy of NanoTNGS for detecting Mycobacterium tuberculosis and its susceptibility or resistance to first- and second-line anti-tuberculosis drugs was assessed by comparing conventional phenotypic drug susceptibility testing (pDST) and Xpert MTB/RIF assays. NanoTNGS can be performed within 12 hours from DNA extraction to the result delivery. Results: NanoTNGS showed a remarkable concordance rate of 99.44% (179/180) with the culture assay for identifying the Mycobacterium tuberculosis complex. The sensitivity of NanoTNGS for detecting drug resistance was 93.53% for rifampicin, 89.72% for isoniazid, 85.45% for ethambutol, 74.00% for streptomycin, and 88.89% for fluoroquinolones. Specificities ranged from 83.33% to 100% for all drugs tested. Sensitivity for rifampicin-resistant tuberculosis using NanoTNGS increased by 9.73% compared to Xpert MTB/RIF. The most common mutations were S531L (codon in E. coli) in the rpoB gene, S315T in the katG gene, and M306V in the embB gene, conferring resistance to rifampicin, isoniazid, and ethambutol, respectively. In addition, mutations in the pncA gene, potentially contributing to pyrazinamide resistance, were detected in 32 patients. Other prevalent variants, including D94G in the gyrA gene and K43R in the rpsL gene, conferred resistance to fluoroquinolones and streptomycin, respectively. Furthermore, the rv0678 R94Q mutation was detected in one sample, indicating potential resistance to bedaquiline. Conclusion: NanoTNGS rapidly and accurately identifies resistance or susceptibility to anti-TB drugs, outperforming traditional methods. Clinical implementation of the technique can recognize DR-TB in time and provide guidance for choosing appropriate antituberculosis agents.

5.
BMC Womens Health ; 24(1): 182, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504245

ABSTRACT

BACKGROUND: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in ESCSCC and minimize the occurrence of adverse events associated with the treatment. METHODS: A dataset comprising MR images was obtained from 289 patients who underwent radical hysterectomy and pelvic lymph node dissection between January 2019 and April 2022. The dataset was randomly divided into two cohorts in a 4:1 ratio.The postoperative radiotherapy options were evaluated according to the Peter/Sedlis standard. We extracted clinical features, as well as intratumoral and peritumoral radiomic features, using the least absolute shrinkage and selection operator (LASSO) regression. We constructed the Clinical Signature (Clinic_Sig), Radiomics Signature (Rad_Sig) and the Deep Transformer Learning Signature (DTL_Sig). Additionally, we fused the Rad_Sig with the DTL_Sig to create the Deep Learning Radiomic Signature (DLR_Sig). We evaluated the prediction performance of the models using the Area Under the Curve (AUC), calibration curve, and Decision Curve Analysis (DCA). RESULTS: The DLR_Sig showed a high level of accuracy and predictive capability, as demonstrated by the area under the curve (AUC) of 0.98(95% CI: 0.97-0.99) for the training cohort and 0.79(95% CI: 0.67-0.90) for the test cohort. In addition, the Hosmer-Lemeshow test, which provided p-values of 0.87 for the training cohort and 0.15 for the test cohort, respectively, indicated a good fit. DeLong test showed that the predictive effectiveness of DLR_Sig was significantly better than that of the Clinic_Sig(P < 0.05 both the training and test cohorts). The calibration plot of DLR_Sig indicated excellent consistency between the actual and predicted probabilities, while the DCA curve demonstrating greater clinical utility for predicting the pathological features for adjuvant radiotherapy. CONCLUSION: DLR_Sig based on intratumoral and peritumoral MRI images has the potential to preoperatively predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma (ESCSCC).


Subject(s)
Carcinoma, Squamous Cell , Deep Learning , Uterine Cervical Neoplasms , Female , Humans , Radiotherapy, Adjuvant , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/radiotherapy , Radiomics , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Magnetic Resonance Imaging , Retrospective Studies
6.
Nat Commun ; 15(1): 742, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272913

ABSTRACT

The prediction of patient disease risk via computed tomography (CT) images and artificial intelligence techniques shows great potential. However, training a robust artificial intelligence model typically requires large-scale data support. In practice, the collection of medical data faces obstacles related to privacy protection. Therefore, the present study aims to establish a robust federated learning model to overcome the data island problem and identify high-risk patients with postoperative gastric cancer recurrence in a multicentre, cross-institution setting, thereby enabling robust treatment with significant value. In the present study, we collect data from four independent medical institutions for experimentation. The robust federated learning model algorithm yields area under the receiver operating characteristic curve (AUC) values of 0.710, 0.798, 0.809, and 0.869 across four data centres. Additionally, the effectiveness of the algorithm is evaluated, and both adaptive and common features are identified through analysis.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/surgery , Artificial Intelligence , Learning , Algorithms
7.
Carbohydr Polym ; 329: 121733, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286534

ABSTRACT

The influence of phase separation behavior on bio-based film properties has attracted more and more attention. This work investigated the effects of microstructure and compatibility of the type-A gelatin (GE)-dextran (DE) mixtures on GE-DE edible film properties. Three kinds of GE-DE edible films with different textures were prepared via modulating the microstructure and compatibility of film-forming mixtures using the method of gelation-drying, e.g., homogeneous films, microphase separated films with relatively homogeneous texture, and microphase separated films with uneven texture. The optical, mechanical, water barrier, and thermal properties of films were characterized. Results showed that microstructure and compatibility significantly affected the film properties. In general, films with DE-in-GE microstructure exhibited the best film properties, followed by films with water-in-water-in-water/bicontinuous microstructure, and then films with GE-in-DE microstructure. And homogeneous films showed the best film properties, followed by films with relatively homogeneous texture, and then films with uneven texture. The weight loss results suggested the potential of GE-DE edible films for application in cherry tomato preservation. This work provided interesting information for the design of film with fabricated microstructure and properties.

8.
Small Methods ; 8(1): e2300971, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37736009

ABSTRACT

Solution method provides a low-cost and environmentally friendly route for the fabrication of Cu2 ZnSn(S,Se)4 (CZTSSe) thin-film solar cells. However, uncontrollable quality of the CZTSSe absorber layer will severely limit the device's performance. In this study, it is find that the thickness and the quality of the formed precursor is not stable because of the variation of the viscosity of the precursor solution. Combined by different characterization methods, the results disclose that such change is strongly related to the reflected color of the first coating layer during precursor growth. Further studies disclose that only by maintaining the appropriate reflected color can a well-crystallized CZTSSe film be prepared, thereby obtaining good solar cell efficiency. This semi-empirical pattern is confirmed by thin-film interference theory. Under the guidance of this method, CZTSSe absorbers with high quality are obtained easily, and the highly efficient CZTSSe solar cell can be fabricated easily. This study provides a feasible and effective strategy to obtain the optimal structure and composition of CZTSSe film toward the production of highly efficient kesterite solar cells, which can also be widely applied to the preparation of other films by solution-based method.

9.
Food Chem ; 438: 138000, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38000154

ABSTRACT

ß-Cyclodextrin (ß-CD) Pickering emulsion and cinnamaldehyde/ß-cyclodextrin (CIN/ß-CD) Pickering emulsion were prepared and the influences of oxidation and digestion were investigated. CIN/ß-CD composite was better dispersed at the oil-water interface than ß-CD. Hydrophobic group of CIN anchored in the oil phase and Hydrophilic hydroxyl group of ß-CD extended into the aqueous phase, which allowed CIN/ß-CD composite to be oriented at the oil-water interface and formed a more stable oil-water interface layer. ß-CD Pickering emulsion was more susceptible to oxidative deterioration than CIN/ß-CD Pickering emulsion, its malondialdehyde (MDA) value was as high as 509.41 ± 9.37 nmol/L. Digestion experiment indicated that CIN/ß-CD Pickering emulsion was released inner oil phase in the small intestine and free fatty acid (FFA) release rate was 44.32 ± 1.08%. Pharmacokinetic parameters manifested that α-tocopherol peak concentration (Cmax) was 64.32 ± 6.45 mg/L and the peak time (Tmax) appeared at 5 h after administration of CIN/ß-CD Pickering emulsion.


Subject(s)
Antioxidants , beta-Cyclodextrins , Emulsions/chemistry , Antioxidants/chemistry , alpha-Tocopherol , beta-Cyclodextrins/chemistry , Water/chemistry , Particle Size
10.
Bioengineering (Basel) ; 10(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38135946

ABSTRACT

Conventional radiomics analysis requires the manual segmentation of lesions, which is time-consuming and subjective. This study aimed to assess the feasibility of predicting muscle invasion in bladder cancer (BCa) with radiomics using a semi-automatic lesion segmentation method on T2-weighted images. Cases of non-muscle-invasive BCa (NMIBC) and muscle-invasive BCa (MIBC) were pathologically identified in a training cohort and in internal and external validation cohorts. For bladder tumor segmentation, a deep learning-based semi-automatic model was constructed, while manual segmentation was performed by a radiologist. Semi-automatic and manual segmentation results were respectively used in radiomics analyses to distinguish NMIBC from MIBC. An equivalence test was used to compare the models' performance. The mean Dice similarity coefficients of the semi-automatic segmentation method were 0.836 and 0.801 in the internal and external validation cohorts, respectively. The area under the receiver operating characteristic curve (AUC) were 1.00 (0.991) and 0.892 (0.894) for the semi-automated model (manual) on the internal and external validation cohort, respectively (both p < 0.05). The average total processing time for semi-automatic segmentation was significantly shorter than that for manual segmentation (35 s vs. 92 s, p < 0.001). The BCa radiomics model based on semi-automatic segmentation method had a similar diagnostic performance as that of manual segmentation, while being less time-consuming and requiring fewer manual interventions.

11.
J Magn Reson Imaging ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37888871

ABSTRACT

BACKGROUND: The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC-related radiological studies still focus on the prediction of VETC status. PURPOSE: This study aimed to build and compare VETC-MVI related models (clinical, radiomics, and deep learning) associated with recurrence-free survival of HCC patients. STUDY TYPE: Retrospective. POPULATION: 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22-80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort (n = 358) and test cohort (n = 40). FIELD STRENGTH/SEQUENCE: 3-T, pre-contrast T1-weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2-weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). ASSESSMENT: Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical-radiomic (CR) nomogram, deep learning model. The follow-up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow-up. Patients were followed up until December 31, 2022. STATISTICAL TESTS: Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan-Meier curves, log-rank test, C-index, and area under the curve (AUC). P < 0.05 was considered statistically significant. RESULTS: The C-index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1-80 months). DATA CONCLUSION: MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

12.
Foods ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37835211

ABSTRACT

Herein, we applied the Illumina MiSeq pyrosequencing platform to amplify the V3-V4 hypervariable regions of the 16 S rRNA gene of the gut microbiota (GM) and a gas chromatograph-mass spectrometer to detect the metabolites after supplementation with pumpkin oligosaccharides (POSs) to determine the metabolic markers and mechanisms in rats with type 2 diabetes (T2D). The POSs alleviated glucolipid metabolism by decreasing the serum low-density lipoprotein (LDL), total cholesterol (TC), and glucose levels. These responses were supported by a shift in the gut microbiota, especially in the butyric-acid-producing communities. Meanwhile, elevated total short-chain fatty acid (SCFA), isovaleric acid, and butyric acid levels were observed after supplementation with POSs. Additionally, this work demonstrated that supplementation with POSs could reduce TNF-α and IL-6 secretion via the FFA2-Akt/PI3K pathway in the pancreas. These results suggested that POSs alleviated T2D by changing the SCFA-producing gut microbiota and SCFA receptor pathways.

13.
Bioprocess Biosyst Eng ; 46(10): 1411-1426, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37688635

ABSTRACT

To facilitate lipid-lowering effects, a lovastatin-producing microbial co-culture system (LPMCS) was constituted with a novel strain Monascus purpureus R5 in combination with Lacticaseibacillus casei S5 and Saccharomyces cerevisiae J7, which increased lovastatin production by 54.21% compared with the single strain R5. Response Surface Methodology (RSM) optimization indicated lovastatin yield peaked at 7.43 mg/g with a fermentation time of 13.88 d, water content of 50.5%, and inoculum ratio of 10.27%. Meanwhile, lovastatin in LPMCS co-fermentation extracts (LFE) was qualitatively and quantitatively analyzed by Thin-Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cellular experiments demonstrated that LFE exhibited no obvious cytotoxicity to L-02 cells and exhibited excellent biosafety. Most notably, high-dose LFE (100 mg/L) exhibited the highest reduction of lipid accumulation, total cholesterol, and triglycerides simultaneously in oleic acid-induced L-02 cells, which decreased by 71.59%, 38.64%, and 58.85% than untreated cells, respectively. Overall, LPMCS provides a potential approach to upgrade the lipid-lowering activity of Monascus-fermented products with higher health-beneficial effects.


Subject(s)
Lacticaseibacillus casei , Monascus , Lovastatin/pharmacology , Coculture Techniques , Lacticaseibacillus , Saccharomyces cerevisiae , Oleic Acid
14.
Chem Biol Interact ; 384: 110725, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37741534

ABSTRACT

Bladder cancer is among the ten most prevalent cancer types worldwide, and its prognosis has not improved significantly in the past three decades because of cognitive limitations in the molecular mechanisms that drive the malignant progression of bladder cancer. Therefore, there is an urgent need to identify new therapeutic drugs or molecular targets to improve the prognosis of patients with bladder cancer. SC66, a novel allosteric inhibitor of AKT, has recently been reported to exert potent anticancer effects on various cancer cells. However, the mechanisms underlying its anticancer effects in bladder cancer remain largely unknown. Consequently, this study aimed to conduct a series of molecular and cellular biology experiments to verify the anticancer effect and potential mechanism of action of SC66 in bladder cancer in vitro. A xenograft tumor model was established to confirm its anticancer role in vivo. Our results showed that SC66 inhibited cell proliferation, triggered mitochondria-mediated apoptosis, and initiated autophagy in bladder cancer cells dose-dependently. In addition, our results suggested that SC66-caused apoptosis and autophagy were endoplasmic reticulum stress-dependent. Interestingly, the activation of autophagy can partially protect bladder cancer cells from apoptosis under endoplasmic reticulum stress induced by SC66 treatment. This study shows that SC66 exerts its anticancer impact on bladder cancer by inhibiting cell proliferation and inducing apoptosis. It also reveals that inhibiting autophagy can increase the cytotoxic effects of SC66 in bladder cancer. Overall, this is the first study on the anticancer effect of SC66 mediated by the endoplasmic reticulum stress pathway and the first report on the AKT-independent anticancer mechanism of SC66 in bladder cancer. Conclusively, exploring the relationship between apoptosis, autophagy, and endoplasmic reticulum stress induced by SC66 indicates that SC66 is a promising novel agent for patients with bladder cancer.

15.
J Colloid Interface Sci ; 646: 198-208, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196493

ABSTRACT

Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to ß-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed ß-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Hydrolases/metabolism , Hydrolysis , Peptides/chemistry , Catalytic Domain
16.
BMC Complement Med Ther ; 23(1): 122, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069622

ABSTRACT

BACKGROUND: Osthole was traditionally used in treatment for various diseases. However, few studies had demonstrated that osthole could suppress bladder cancer cells and its mechanism was unclear. Therefore, we performed a research to explore the potential mechanism for osthole against bladder cancer. METHODS: Internet web servers SwissTargetPrediction, PharmMapper, SuperPRED, and TargetNet were used to predict the Osthole targets. GeneCards and the OMIM database were used to indicate bladder cancer targets. The intersection of two target gene fragments was used to obtain the key target genes. Protein-protein interaction (PPI) analysis was performed using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Furthermore, we used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to explore the molecular function of target genes. AutoDock software was then used to perform molecular docking of target genes,osthole and co-crystal ligand. Finally, an in vitro experiment was conducted to validate bladder cancer inhibition by osthole. RESULTS: Our analysis identified 369 intersection genes for osthole, the top ten target genes included MAPK1, AKT1, SRC, HRAS, HASP90AA1, PIK3R1, PTPN11, MAPK14, CREBBP, and RXRA. The GO and KEGG pathway enrichment results revealed that the PI3K-AKT pathway was closely correlated with osthole against bladder cancer. The osthole had cytotoxic effect on bladder cancer cells according to the cytotoxic assay. Additionally, osthole blocked the bladder cancer epithelial-mesenchymal transition and promoted bladder cancer cell apoptosis by inhibiting the PI3K-AKT and Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathways. CONCLUSIONS: We found that osthole had cytotoxic effect on bladder cancer cells and inhibited invasion, migration, and epithelial-mesenchymal transition by inhibiting PI3K-AKT and JAK/STAT3 pathways in in vitro experiment. Above all, osthole might have potential significance in treatment of bladder cancer. SUBJECTS: Bioinformatics, Computational Biology, Molecular Biology.


Subject(s)
Network Pharmacology , Urinary Bladder Neoplasms , Humans , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics
17.
Comput Methods Programs Biomed ; 233: 107466, 2023 May.
Article in English | MEDLINE | ID: mdl-36907040

ABSTRACT

BACKGROUND AND OBJECTIVES: Radiomics and deep learning are two popular technologies used to develop computer-aided detection and diagnosis schemes for analysing medical images. This study aimed to compare the effectiveness of radiomics, single-task deep learning (DL) and multi-task DL methods in predicting muscle-invasive bladder cancer (MIBC) status based on T2-weighted imaging (T2WI). METHODS: A total of 121 tumours (93 for training, from Centre 1; 28 for testing, from Centre 2) were included. MIBC was confirmed with pathological examination. A radiomics model, a single-task model, and a multi-task model based on T2WI were constructed in the training cohort with five-fold cross-validation, and validation was conducted in the external test cohort. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of each model. DeLong's test and a permutation test were used to compare the performance of the models. RESULTS: The area under the ROC curve (AUC) values of the radiomics, single-task and multi-task models in the training cohort were: 0.920, 0.933 and 0.932, respectively; and were 0.844, 0.884 and 0.932, respectively, in the test cohort. The multi-task model achieved better performance in the test cohort than did the other models. No statistically significant differences in AUC values and Kappa coefficients were observed between pairwise models, in either the training or test cohorts. According to the Grad-CAM feature visualization results, the multi-task model focused more on the diseased tissue area in some samples of the test cohort compared with the single-task model. CONCLUSIONS: The T2WI-based radiomics, single-task, and multi-task models all exhibited good diagnostic performance in preoperatively predicting MIBC, in which the multi-task model had the best diagnostic performance. Compared with the radiomics method, our multi-task DL method had the advantage of saving time and effort. Compared with the single-task DL method, our multi-task DL method had the advantage of being more lesion-focused and more reliable for clinical reference.


Subject(s)
Deep Learning , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , ROC Curve , Muscles/diagnostic imaging , Retrospective Studies
18.
Oncol Rep ; 49(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-36734273

ABSTRACT

After the publication of the article, an interested reader drew to the authors' attention that the Du145 'Control' migration panel in Fig. 2C appeared to overlap with the Du145 'Control' invasion panel in Fig. 5A; furthermore, two of the Du145 panels in Fig. 5A also appeared to overlap. The authors have consulted their original data, and realize that these figures were inadvertently assembled incorrectly. The corrected versions of Figs. 2 and 5, incorporating the correct data for the Du145 'Control' panel in Fig. 2C, and the TQ­/TGF­ß OE­ invasion and migration panels, and the TQ+/TGF­ß OE+ migration panel, in Fig. 5A, are shown on the next page. These further corrections do not grossly affect the results or the conclusions reported in this work. The authors all agree to this Corrigendum, and are grateful to the Editor of Oncology Reports for granting them the opportunity to correct the errors that were made during the assembly of these figures. Lastly, the authors apologize to the readership for any inconvenience these errors may have caused. [Oncology Reports 38: 3592­3598, 2017; DOI: 10.3892/or.2017.6012].

19.
Comput Biol Med ; 154: 106567, 2023 03.
Article in English | MEDLINE | ID: mdl-36738705

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) and community-acquired pneumonia (CAP) present a high degree of similarity in chest computed tomography (CT) images. Therefore, a procedure for accurately and automatically distinguishing between them is crucial. METHODS: A deep learning method for distinguishing COVID-19 from CAP is developed using maximum intensity projection (MIP) images from CT scans. LinkNet is employed for lung segmentation of chest CT images. MIP images are produced by superposing the maximum gray of intrapulmonary CT values. The MIP images are input into a capsule network for patient-level pred iction and diagnosis of COVID-19. The network is trained using 333 CT scans (168 COVID-19/165 CAP) and validated on three external datasets containing 3581 CT scans (2110 COVID-19/1471 CAP). RESULTS: LinkNet achieves the highest Dice coefficient of 0.983 for lung segmentation. For the classification of COVID-19 and CAP, the capsule network with the DenseNet-121 feature extractor outperforms ResNet-50 and Inception-V3, achieving an accuracy of 0.970 on the training dataset. Without MIP or the capsule network, the accuracy decreases to 0.857 and 0.818, respectively. Accuracy scores of 0.961, 0.997, and 0.949 are achieved on the external validation datasets. The proposed method has higher or comparable sensitivity compared with ten state-of-the-art methods. CONCLUSIONS: The proposed method illustrates the feasibility of applying MIP images from CT scans to distinguish COVID-19 from CAP using capsule networks. MIP images provide conspicuous benefits when exploiting deep learning to detect COVID-19 lesions from CT scans and the capsule network improves COVID-19 diagnosis.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , COVID-19 Testing , SARS-CoV-2 , Pneumonia/diagnostic imaging , Tomography, X-Ray Computed/methods
20.
Appl Bionics Biomech ; 2023: 4324889, 2023.
Article in English | MEDLINE | ID: mdl-36726392

ABSTRACT

The fetus movements play an important role in fetal well-being. With the continuous advancement of real-time scanning machines, it is feasible to observe the fetus movement in detail. The characteristics of fetal lower limb movements in prenatal examination have not been systematically investigated. This review proposes the patterns of fetal lower limb movements, the maternal influence on fetal lower limb movements, and the application of fetal lower limb movements for the diagnosis of prenatal diseases. A systematic search of literature on the lower limb movements of the fetus in uterus was performed in the databases, namely, Web of Science and Scopus. Thirty-four publications were selected. This review demonstrates that isolated fetal lower limb movements are rare and always accompanied with the movements of other body segments. Detection of the presence of fetal leg movements seems to be of no diagnostic value for fetuses with prenatal diseases. The isolated lower limb movement was statistically significant different between fetuses of low- and high-risk pregnant women. The coordinated movements of the fetal lower limbs and other parts should be considered when analyzing fetal movements in the future study.

SELECTION OF CITATIONS
SEARCH DETAIL
...