Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Signal Transduct Target Ther ; 9(1): 109, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714712

ABSTRACT

The knee joint has long been considered a closed system. The pathological effects of joint diseases on distant organs have not been investigated. Herein, our clinical data showed that post-traumatic joint damage, combined with joint bleeding (hemarthrosis), exhibits a worse liver function compared with healthy control. With mouse model, hemarthrosis induces both cartilage degeneration and remote liver damage. Next, we found that hemarthrosis induces the upregulation in ratio and differentiation towards Th17 cells of CD4+ T cells in peripheral blood and spleen. Deletion of CD4+ T cells reverses hemarthrosis-induced liver damage. Degeneration of cartilage matrix induced by hemarthrosis upregulates serological type II collagen (COL II), which activates CD4+ T cells. Systemic application of a COL II antibody blocks the activation. Furthermore, bulk RNAseq and single-cell qPCR analysis revealed that the cartilage Akt pathway is inhibited by blood treatment. Intra-articular application of Akt activator blocks the cartilage degeneration and thus protects against the liver impairment in mouse and pig models. Taken together, our study revealed a pathological joint-liver axis mediated by matrikine-activated CD4+ T cells, which refreshes the organ-crosstalk axis and provides a new treatment target for hemarthrosis-related disease. Intra-articular bleeding induces cartilage degradation through down-reulation of cartilage Akt pathway. During this process, the soluble COL II released from the damaged cartilage can activate peripheral CD4+ T cells, differention into Th17 cells and secretion of IL-17, which consequently induces liver impairment. Intra-articular application of sc79 (inhibitor of Akt pathway) can prevent the cartilage damage as well as its peripheral influences.


Subject(s)
CD4-Positive T-Lymphocytes , Liver , Animals , Mice , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Liver/pathology , Liver/metabolism , Hemarthrosis/genetics , Hemarthrosis/pathology , Male , Disease Models, Animal , Th17 Cells/immunology , Th17 Cells/pathology , Collagen Type II/genetics , Elapid Venoms/pharmacology , Female , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
2.
J Clin Med ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38610675

ABSTRACT

Background: This study investigates the efficacy of the Cervical Endoscopic Unilateral Laminoforaminotomy for Bilateral Decompression (CE-ULFBD) technique in treating cervical myeloradiculopathy, primarily caused by degenerative spondylosis. Traditionally managed through multisegmental anterior cervical discectomy and fusion (ACDF) or laminoplasty combined with foraminotomy, this condition has recently experienced a promising shift towards minimally invasive approaches, particularly endoscopic spinal decompression. While empirical evidence is still emerging, these techniques show potential for effective treatment. Method: The objective was to evaluate the outcomes of CE-ULFBD in achieving single or multilevel bilateral foraminal and central decompression, emphasizing the reduction of injury to posterior cervical muscles and the associated postoperative neck soreness common in conventional procedures. This paper delineates the surgical procedures involved in CE-ULFBD and presents the clinical outcomes of nine patients diagnosed with myeloradiculopathy due to severe cervical stenosis. Result: Assessments were conducted using the Visual Analogue Scale (VAS) for neck and arm pain and the Modified Japanese Orthopaedic Association scale (mJOA) for the activity measurement of daily living. Results indicated a considerable decrease in pain levels according to the VAS, coupled with significant improvements in functional capacities as measured by the mJOA scale. Additionally, no major postoperative complications were noted during the follow-up period. Conclusion: The study concludes that CE-ULFBD is a safe and effective approach for the treatment of cervical myeloradiculopathy resulting from severe cervical stenosis, offering a viable and less invasive alternative to traditional decompressive surgeries.

3.
Eur J Pediatr ; 183(4): 1901-1910, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38337095

ABSTRACT

The aim of the study was to determine the relationship between flatfoot morphology and body mass and height in children aged 6-12 years. A total of 6471 Chinese children (mean age 9.0 ± 1.9 years, 41% female) were assessed for foot morphometry, body height, and body mass index. Foot morphology, including foot length, width, girth, arch height, hallux valgus angle, and rearfoot valgus angle, was measured using a 3D laser scanner. Flatfoot evaluations were conducted using the Sztriter-Godunov index (KY) from footprints. All measurements were analyzed by age and sex using the mean values of the left and right sides. Comparisons were performed between flatfoot groups, between body mass index (BMI) groups, and between body height groups. The study revealed a significant decrease in the incidence of bipedal flatfoot with age (p < 0.001), whereas the prevalence of obesity remained consistent (p > 0.05). Bipedal flatfoot was associated with distinct morphological changes, including lower arches, reduced instep height, diminished ankle heights and a greater rearfoot valgus angle (p < 0.05). When comparing the BMI groups, overweight children had larger and thicker feet (p < 0.05), but no differences were found in arch height and ankle height (p > 0.05). When comparing the body height groups, short-statured children had a shorter feet girth, shorter arches, and shorter ankle height (p < 0.05), but no differences were found in the rearfoot valgus angle (p > 0.05). CONCLUSION: The main characteristics of flat feet include lower arches and instep heights and ankle heights but higher rearfoot valgus angles. In general, overweight children's feet do not have the common features of flat feet. In contrast, short children had similar features of flatfoot except for rearfoot valgus. Assessment of posture, such as rearfoot valgus, can be critical in identifying children with flat feet. WHAT IS KNOWN: • The morphology of children's feet is associated with body growth, but the relationship between flatfeet and body mass and height remains controversial. WHAT IS NEW: • Three-dimensional foot measurement shows that body mass is generally not associated with flatfeet, while short children have lower arches but no rearfoot valgus.


Subject(s)
Flatfoot , Child , Humans , Female , Male , Flatfoot/epidemiology , Flatfoot/complications , Overweight , Body Height , Foot/anatomy & histology , Obesity/complications
4.
Adv Mater ; 36(23): e2312661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38290062

ABSTRACT

Solid-state lithium-oxygen (Li-O2) batteries have been widely recognized as one of the candidates for the next-generation of energy storage batteries. However, the development of solid-state Li-O2 batteries has been hindered by the lack of solid-state electrolyte (SSE) with high ionic conductivity at room temperature, high Li+ transference number, and the high stability to air. Herein, the organic molecular porous solid cucurbit[7]uril (CB[7]) with one-dimensional (1D) ion migration channels is developed as the SSE for solid-state Li-O2 batteries. Taking advantage of the 1D ion migration channel for Li+ conduction, CB[7] SSE achieves high ionic conductivity (2.45 × 10-4 S cm-1 at 25 °C). Moreover, the noncovalent interactions facilitated the immobilization of anions, realizing a high Li+ transference number (tLi + = 0.81) and Li+ uniform distribution. The CB[7] SSE also shows a wide electrochemical stability window of 0-4.65 V and high thermal stability and chemical stability, as well as realizes stable Li+ plating/stripping (more than 1000 h at 0.3 mA cm-2). As a result, the CB[7] SSE endows solid-state Li-O2 batteries with superior rate capability and long-term discharge/charge stability (up to 500 h). This design strategy of CB[7] SSE paves the way for stable and efficient solid-state Li-O2 batteries toward practical applications.

5.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38198190

ABSTRACT

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

6.
Angew Chem Int Ed Engl ; 63(5): e202317949, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38078904

ABSTRACT

Solid-state lithium (Li) batteries promise both high energy density and safety while existing solid-state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3 PW12 O40 and Li3 PMo12 O40 , are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm-1 and a low activation energy of 0.23 eV are obtained due to the optimized three-dimensional Li+ migration network of Li3 PW12 O40 . Li3 PW12 O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high-voltage cathodes. As a result, all-solid-state Li metal batteries fabricated with Li/Li3 PW12 O40 /LiNi0.5 Co0.2 Mn0.3 O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm-2 , as well as a cost-competitive SSEs price of $5.68 kg-1 . Moreover, Li3 PMo12 O40 homologous to Li3 PW12 O40 was obtained via isomorphous substitution, which formed a low-resistance interface with Li3 PW12 O40 . Applications of Li3 PW12 O40 and Li3 PMo12 O40 in Li-air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low-cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high-energy solid-state Li metal batteries.

7.
J Orthop Translat ; 42: 73-81, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37664079

ABSTRACT

Rotator cuff tendinopathy is a common musculoskeletal disorder that imposes significant health and economic burden. Stem cell therapy has brought hope for tendon healing in patients with final stage rotator cuff tendinopathy. Some clinical trials have confirmed the effectiveness of stem cell therapy for rotator cuff tendinopathy, but its application has not been promoted and approved. There are still many issues that should be solved prior to using stem cell therapy in clinical applications. The optimal source and dose of stem cells for rotator cuff tendinopathy should be determined. We also proposed novel prospective approaches that can overcome cell population heterogeneity and standardize patient types for stem cell applications. The translational potential of this article: This review explores the optimal sources of stem cells for rotator cuff tendinopathy and the principles for selecting stem cell dosages. Key strategies are provided for stem cell population standardization and recipient selection.

8.
J Orthop Translat ; 42: 43-56, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37637777

ABSTRACT

Background: Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods: We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results: For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions: The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article: The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.

9.
Eur J Pharmacol ; 957: 176009, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37619784

ABSTRACT

Osteosarcoma (OS) is a highly fatal bone tumor characterized by high degree of malignancy and early lung metastasis. Traditional chemotherapy fails in improving the efficacy and survival rate of patients with OS. Butyrate (NaBu) has been reported as a new antitumor drug for inhibiting proliferation and inducing apoptosis in various cancer cells. However, the effect of NaBu on the ferroptosis of OS is still unknown. This study aimed to investigate whether NaBu promotes erastin-induced ferroptosis in OS cells and to uncover the underlying mechanism. Here, we found that NaBu significantly enhanced erastin-induced ferroptosis in vitro and in vivo. Compared with the group that erastin used alonely, pre-treating with NaBu exacerbated erastin-meditated GSH depletion, lipid peroxidation, and mitochondrial morphologic changes in OS cells. In a subcutaneous OS model, NaBu combined with erastin significantly reduced tumor growth and increased the levels of 4-HNE. Mechanistically, NaBu downregulated SLC7A11 transcription via regulating ATF3 expression. Overexpression of ATF3 facilitated erastin to induce ferroptosis, while ATF3 knockdown attenuated NaBu-induced ferroptosis sensitivity. In conclusion, our findings revealed a previously unidentified role of NaBu in erastin-induced ferroptosis by regulating SLC7A11, suggesting that NaBu may be a potential therapeutic agent for OS treatment.


Subject(s)
Bone Neoplasms , Ferroptosis , Osteosarcoma , Humans , Butyrates , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapy , Amino Acid Transport System y+/genetics , Activating Transcription Factor 3
10.
Angew Chem Int Ed Engl ; 62(37): e202308837, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37477109

ABSTRACT

Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10-3  S cm-1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g-1 ) and long-term discharge/charge stability (247 cycles) for solid-state Li-O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.

11.
Aging (Albany NY) ; 14(2): 892-906, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35073518

ABSTRACT

Osteoporosis is a systemic bone disease characterized by decreased bone mass and deterioration of bone microstructure, which leads to increased bone fragility and increased risk of fractures. Casein kinase 2 interacting protein 1 (CKIP-1, also known as PLEKHO1) is involved in the biological process of bone formation, differentiation and apoptosis, and is a negative regulator of bone formation. QiangGuYin (QGY) is a famous TCM formula that has been widely used in China for the clinical treatment of postmenopausal osteoporosis for decades, but the effect in regulating CKIP-1 on osteoporosis is not fully understood. This study aimed to explore the potential mechanism of CKIP-1 participating in autophagy in bone cells through the AKT/mTOR signaling pathway and the regulatory effect of QGY. The results in vivo showed that QGY treatment can significantly improve the bone quality of osteoporotic rats, down-regulate the expression of CKIP-1, LC3II/I and RANKL, and up-regulated the expression of p62, p-AKT/AKT, p-mTOR/mTOR, RUNX2 and OPG. It is worth noting that the results in vitro confirmed that CKIP-1 interacts with AKT. By up-regulating the expression of Atg5 and down-regulating the p62, the level of LC3 (autophagosome) is increased, and the cells osteogenesis and differentiation are inhibited. QGY inhibits the combination of CKIP-1 and AKT in osteoblasts, activates the AKT/mTOR signaling pathway, inhibits autophagy, and promotes cell differentiation, thereby exerting an anti-osteoporosis effect. Therefore, QGY targeting CKIP-1 to regulate the AKT/mTOR-autophagy signaling pathway may represent a promising drug candidate for the treatment of osteoporosis.


Subject(s)
Osteoporosis , Proto-Oncogene Proteins c-akt , Animals , Autophagy , Osteoporosis/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
Biochem Biophys Res Commun ; 583: 146-153, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34763194

ABSTRACT

Osteolytic disorders are characterized by impaired bone volume and trabecular structure that leads to severe fragility fractures. Studies have shown that excessive osteoclast activity causes impaired bone microstructure, a sign of osteolytic diseases such as osteoporosis. Approaches of inhibiting osteoclastogenesis and bone resorption specifically could prevent osteoporosis and other osteolytic disorders. Acacetin is a potent molecule extracted from plants with anti-cancer and anti-inflammatory bioactivities. Here, we demonstrated, for the first time, that acacetin repressed osteoclastogenesis, formation of F-actin rings, bone resorption activity, and osteoclast-related gene expression in vitro through modulating ERK, P38, and NF-κB signaling pathways and preventing expression of NFATc1. Micro-CT and H & E staining results indicated that acacetin alleviated LPS-induced osteolysis in vivo. Overall, our findings suggested that acacetin could help to prevent osteoporosis and other osteoclast-related osteolytic disorders.

14.
Front Bioeng Biotechnol ; 9: 625877, 2021.
Article in English | MEDLINE | ID: mdl-34490219

ABSTRACT

Titanium (Ti)-based alloys are widely used in tissue regeneration with advantages of improved biocompatibility, high mechanical strength, corrosion resistance, and cell attachment. To obtain bioactive bone-implant interfaces with enhanced osteogenic capacity, various methods have been developed to modify the surface physicochemical properties of bio-inert Ti and Ti alloys. Nano-structured hydroxyapatite (HA) formed by micro-arc oxidation (MAO) is a synthetic material, which could facilitate osteoconductivity, osteoinductivity, and angiogenesis on the Ti surface. In this paper, we applied MAO and steam-hydrothermal treatment (SHT) to produce HA-coated Ti, hereafter called Ti-M-H. The surface morphology of Ti-M-H1 was observed by scanning electron microscopy (SEM), and the element composition and the roughness of Ti-M-H1 were analyzed by energy-dispersive X-ray analysis, an X-ray diffractometer (XRD), and Bruker stylus profiler, demonstrating the deposition of nano-HA particles on Ti surfaces that were composed of Ca, P, Ti, and O. Then, the role of Ti-M-H in osteogenesis and angiogenesis in vitro was evaluated. The data illustrated that Ti-M-H1 showed a good compatibility with osteoblasts (OBs), which promoted adhesion, spreading, and proliferation. Additionally, the secretion of ALP, Col-1, and extracellular matrix mineralization was increased by OBs treated with Ti-M-H1. Ti-M-H1 could stimulate endothelial cells to secrete vascular endothelial growth factor and promote the formation of capillary-like networks. Next, it was revealed that Ti-M-H1 also suppressed inflammation by activating macrophages, while releasing multiple active factors to mediate osteogenesis and angiogenesis. Finally, in vivo results uncovered that Ti-M-H1 facilitated a higher bone-to-implant interface and was more attractive for the dendrites, which promoted osseointegration. In summary, MAO and SHT-treated Ti-M-H1 not only promotes in vitro osteogenesis and angiogenesis but also induces M2 macrophages to regulate the immune environment, which enhances the crosstalk between osteogenesis and angiogenesis and ultimately accelerates the process of osseointegration in vivo.

15.
Bioengineered ; 12(1): 310-324, 2021 12.
Article in English | MEDLINE | ID: mdl-33446013

ABSTRACT

In clinical practice, we found that microRNA (miR)-146a-5p is significantly up-regulated in peripheral blood mononuclear cells (PBMCs) of primary sjögren's syndrome (pSS) patients. In vitro experiments confirmed that miR-146a-5p promotes T helper 17 (Th17) cell differentiation, but the specific mechanism is still unknown. To solve this problem, 20 pSS patients and 20 healthy subjects were enrolled in this study and PBMCs were isolated from their blood. The expression of the membrane IL-23 R (mIL-23 R) in PBMCs was determined. CD3+ T cells were also isolated and used to further analyze the relationship between the ectodomain shedding of mIL-23 R and a disintegrin and metalloprotease 17 (ADAM17). Finally, miR-146a-5p inhibitor and mimics were transfected into PBMCs to evaluate the relationship between ADAM17 and mIL-23 R, and explore the role of mIL-23 R and ADAM17 in Th17 cell differentiation. Our results revealed a significantly increased expression of miR-146a-5p in PBMCs from pSS patients and significantly increased percentage of Th17 cells compared to PBMCs from healthy controls. Under polarization culture conditions, pSS patient-derived PBMCs can more easily differentiate into Th17 cells, which was, to a great extent, attributable to the increased expression of mIL-23 R. Moreover, ADAM17, an ectodomain sheddase of mIL-23 R, was targeted and negatively regulated by miR-146a-5p, which reduced the ectodomain shedding of mIL-23 R. Overall, our results suggested that miR-146a-5p could promote Th17 cell differentiation through targeting and negatively regulating ADAM17. Thus, these results might offer a new approach in the treatment of pSS.


Subject(s)
ADAM17 Protein , Cell Differentiation/genetics , MicroRNAs , Sjogren's Syndrome , Th17 Cells , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Adult , Humans , Interleukin-23/genetics , Interleukin-23/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/blood , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/metabolism , Th17 Cells/cytology , Th17 Cells/metabolism , Young Adult
16.
Front Mol Biosci ; 8: 705148, 2021.
Article in English | MEDLINE | ID: mdl-35071320

ABSTRACT

Objective: Hypoxic tumors contribute to local failure and distant metastases. Nevertheless, the molecular hallmarks of hypoxia remain ill-defined in osteosarcoma. Here, we developed a hypoxic gene signature in osteosarcoma prognoses. Methods: With the random survival forest algorithm, a prognostic hypoxia-related gene signature was constructed for osteosarcoma in the TARGET cohort. Overall survival (OS) analysis, receiver operating characteristic (ROC) curve, multivariate cox regression analysis, and subgroup analysis were utilized for assessing the predictive efficacy of this signature. Also, external validation was presented in the GSE21257 cohort. GSEA was applied for signaling pathways involved in the high- and low-risk samples. Correlation analyses between risk score and immune cells, stromal/immune score, immune checkpoints, and sensitivity of chemotherapy drugs were performed in osteosarcoma. Then, a nomogram was built by integrating risk score, age, and gender. Results: A five-hypoxic gene signature was developed for predicting survival outcomes of osteosarcoma patients. ROC curves confirmed that this signature possessed the well predictive performance on osteosarcoma prognosis. Furthermore, it could be independently predictive of prognosis. Metabolism of xenobiotics by cytochrome P450 and nitrogen metabolism were activated in the high-risk samples while cell adhesion molecules cams and intestinal immune network for IgA production were enriched in the low-risk samples. The low-risk samples were characterized by elevated immune cell infiltrations, stromal/immune scores, TNFRSF4 expression, and sensitivity to cisplatin. The nomogram accurately predicted 1-, 3-, and 5-years survival duration. Conclusion: These findings might offer an insight into the optimization of prognosis risk stratification and individualized therapy for osteosarcoma patients.

17.
J Biomed Nanotechnol ; 17(4): 662-676, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-35057892

ABSTRACT

Graphene oxide (GO), a kind of polymer, is often selected as a controlled released agent, whereas titanium dioxide (TiO2) nanotubes are commonly used as a drug-coated carrier. This study was conducted to develop methods for manufacturing the GO/TiO2/HHC-36 composite coating and exploring its bacteriostat and osteogenesis properties. The GO/TiO2 nanotubes were prepared by electrochemical methods and HHC-36 was then adsorbed to GO/TiO2to obtain GO/TiO2/HHC-36. Sustained release of HHC-36 was analyzed and the antibacterial effect was examined by the inhibition zone test. The biocompatibility and osteogenesis in vitro of GO/TiO2/HHC-36 were explored. Finally, the osteogenesic property of the composite coating was investigated in a rat femoral defect model in vivo. GO/TiO2/HHC-36 was successfully prepared and had good controlled released performance in vitro. The inhibit zone size of S. aureus was 2.1 mm and that of E. coli was 3.0 mm. GO/TiO2/HHC-36 showed good biocompatibility with mesenchymal stem cells (MSCs) and promoted their adhesion, migration, and differentiation. In addition, the secretion of alkaline phosphatase, collagen, mineralized matrix and osteoblast-related nutrient factors of MSCs was increased after treatment with GO/TiO2/HHC-36. Furthermore, GO/TiO2/HHC-36 also stimulated endotheliocytes to secrete VEGF, leading to angiogenesis. Finally, implantation of GO/TiO2/HHC-36 in the rat femur defect model resulted in MSC migration and increased expression of osteoblast related proteins. The composite coating with controlled released of HHC-36 showed distinct antibacterial properties and promoted osteogenesis in vitro and in vivo.


Subject(s)
Nanotubes , Osteogenesis , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Graphite , Peptides , Rats , Staphylococcus aureus , Thiram , Titanium
18.
J Biomed Nanotechnol ; 16(6): 885-898, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-33187584

ABSTRACT

The surface modification of titanium is effective in promoting osseointegration and is widely used in the treatment of bone diseases. Epimedii Folium (EF) plays an important role in the treatment of metabolic bone diseases. However, few studies have so far been reported on their combined use in such treatments. In the present study, EF water extract was coated onto the surface of TiO2 nanotubes (TNT) by electrochemical anodization to obtain EF-TNT. Through analysis of surface morphology characteristics, it was demonstrated that EF was successfully coated on the surface of TiO2 nanotubes. In vitro drug release data suggested that the quantity of EF water extract released was a significant quantity over 4 days, reaching a total of 80%, the release continuing in total for approximately 2 weeks. By using scanning electron microscopy and immunofluorescent staining, it was found that, EF-TNT more strongly promoted adhesion, proliferation, and differentiation of MC3T3-E1 osteoblasts compared with Ti and TNT. Quantitative reverse transcript polymerase chain reaction (qRT-PCR) analysis indicated that the expression of key genes for proliferation and differentiation of osteoblasts, such as COL1a1, ALP, OPN, and Runx2, were up-regulated by EF-TNT. Network pharmacology analysis suggested that EF water extract not only regulated the proliferation and differentiation of osteoblasts but also caused a regulatory effect on osteoclasts via multiple signaling pathways, such as RANKL-RANK-induced signaling and TGF-ß signaling. These findings indicate that the EF-TNT promotes differentiation and proliferation of osteoblasts, and represents considerable potential for use in clinical applications.


Subject(s)
Nanotubes , Water , Cell Differentiation , Cell Proliferation , Drugs, Chinese Herbal , Osteoblasts , Surface Properties , Titanium/pharmacology
19.
J Mass Spectrom ; 56(4): e4667, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33098340

ABSTRACT

We developed a preconcentration method in which aerosol droplets containing enriched perfluorinated sulfonic acids (PFSs) are generated through bubble bursting and collected. The droplets were subjected to PFS analysis of perfluorohexane sulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS) through surface-assisted laser desorption/ionization-time-of-flight mass spectrometry; silver nanoplates (AgNPts) were assisting materials. The method was highly efficient, with an approximately three-order magnitude enhancement (5 × 10-13 to 1 × 10-11 M). Ultralow PFS concentrations (0.5 ng/L of PFOS; 0.4 ng/L of PFHxS) were detected in preconcentrated tap water containing PFSs. Our method has potential for rapid real-world PFS detection in water.

20.
Medicine (Baltimore) ; 99(35): e21902, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32871922

ABSTRACT

The function of miR-9 in osteosarcoma is not well-investigated and controversial. Therefore, we conducted meta-analysis to explore the role of miR-9 in osteosarcoma, and collected relevant TCGA data to further testify the result. In addition, bioinformatics analysis was conducted to investigate the mechanism and related pathways of miR-9-3p in osteosarcoma.Literature search was operated on databases up to February 19, 2020, including PubMed, Web of Science, Science Direct, Cochrane Central Register of Controlled Trials, and Wiley Online Library, China National Knowledge Infrastructure, China Biology Medicine disc, Chongqing VIP, and Wan Fang Data. The relation of miR-9 expression with survival outcome was estimated by hazard ratio (HRs) and 95% CIs. Meta-analysis was conducted on the Stata 12.0 (Stata Corporation, TX). To further assess the function of miR-9 in osteosarcoma, relevant data from the TCGA database was collected. Three databases, miRDB, miRPathDB 2.0, and Targetscan 7.2, were used for prediction of target genes. Genes present in these 3 databases were considered as predicted target genes of miR-9-3p. Venny 2.1 were used for intersection analysis. Subsequently, GO, KEGG, and PPI network analysis were conducted based on the overlapping target genes of miR-9-3p to explore the possible molecular mechanism in osteosarcoma.Meta-analysis shown that overexpression of miR-9 was associated with worse overall survival (OS) (HR = 4.180, 95% CI: 2.880-6.066, P < .001, I = 23.5%). Based on TCGA data, osteosarcoma patients with overexpression of miR-9-3p (HR = 1.603, 95% CI: 1.028-2.499, P = .037) and miR-9-5p (HR = 1.698, 95% CI: 1.133-2.545, P = .01) also suffered poor OS. In bioinformatics analysis, 2 significant and important pathways were enriched: Wnt signaling pathway from gene ontology analysis (gene ontology:0016055, P-adjust = .008); hippo signaling pathway from Kyoto Encyclopedia of Genes and Genomes analysis (P-adjust = .007). Moreover, network analysis relevant protein-protein interaction was visualized, revealing 117 nodes and 161 edges.High miR-9 expression was associated with poor prognosis. Based on bioinformatics analysis, this study enhanced the understanding of the mechanism and related pathways of miR-9 in osteosarcoma.


Subject(s)
MicroRNAs/genetics , Osteosarcoma/genetics , Computational Biology , Databases, Genetic , Gene Expression Profiling , Humans , Prognosis , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...