Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Article in English | MEDLINE | ID: mdl-38980910

ABSTRACT

Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.

2.
Biochim Biophys Acta Mol Basis Dis ; : 167349, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002703

ABSTRACT

Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling. Epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is considered to be a crucial player in asthma. Methyltransferase-like 14 (METTL14), an RNA methyltransferase, is implicated in multiple pathological processes, including EMT, cell proliferation and migration. However, the role of METTL14 in asthma remains uncertain. This research aimed to explore the biological functions of METTL14 in asthma and its underlying upstream mechanisms. METTL14 expression was down-regulated in asthmatic from three GEO datasets (GSE104468, GSE165934, and GSE74986). Consistent with this trend, METTL14 was decreased in the lung tissues of OVA-induced asthmatic mice and transforming growth factor-ß1 (TGF-ß1)-stimulated human bronchial epithelial cells (Beas-2B) in this study. Overexpression of METTL14 caused reduction in mesenchymal markers (FN1, N-cad, Col-1 and α-SMA) in TGF-ß1-treated cells, but caused increase in epithelial markers (E-cad), thus inhibiting EMT. Also, METTL14 suppressed the proliferation and migration ability of TGF-ß1-treated Beas-2B cells. Two transcription factors, ETS1 and RBPJ, could both bind to the promoter region of METTL14 and drive its expression. Elevating METTL14 expression could reversed EMT, cell proliferation and migration promoted by ETS1 or RBPJ deficiency. These results indicate that the ETS1/METTL14 and RBPJ/METTL14 transcription axes exhibit anti-EMT, anti-proliferation and anti-migration functions in TGF-ß1-induced bronchial epithelial cells, implying that METTL14 may be considered an alternative candidate target for the treatment of asthma.

3.
Ecotoxicol Environ Saf ; 280: 116587, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38878336

ABSTRACT

Early cyanobacterial blooms studies observed that exposure to blue-green algae led to fish gills impairment. The objective of this work was to evaluate the toxic mechanisms of exudates of Microcystis aeruginosa (MaE) on fish gills. In this study, the toxic mechanism of MaE (2×106 cells/mL) and one of its main components phytosphingosine (PHS) with two concentrations 2.9 ng/mL and 145 ng/mL were conducted by integrating histopathology, biochemical biomarkers, and transcriptomics techniques in Sinocyclocheilus grahami (S. grahami) for 96 h exposure. Damaged gill tissue with epithelial hyperplasia and hypertrophy, remarkable Na+/K+-ATPase (NKA) enzyme activity, disrupted the redox homeostats including lipid peroxidation and inflammatory responses were observed in the fish of MaE exposure group. Compare to MaE exposure, two concentrations of PHS exposure appeared to be a trend of lower degree of tissue damage, NKA activity and oxidative stress, but induced obviously lipid metabolism disorder with higher triglycerides, total cholesterol and total bile acid, which might be responsible for inflammation responses in fish gill. By transcriptome analysis, MaE exposure were primarily enriched in pathways related to gill function and immune response. PHS exposure, with higher number of differentially expressed genes (DEGs), were enriched in Toll-like receptor (TLR), Mitogen-Activated Protein Kinase (MAPK) and NOD-like receptor protein 3 (NLRP3) pathways. We concluded that MaE and PHS were induced the inflammatory responses, with oxidative stress-induced inflammation for MaE exposure but lipid metabolism disorder-induced inflammation for PHS exposure. The present study provided two toxin-induced gill inflammation response pathways under cyanobacterial blooms, which could be a scientific basis for the ecological and health risk assessment in the aquatic environment.


Subject(s)
Gills , Microcystis , Oxidative Stress , Animals , Gills/drug effects , Gills/pathology , Oxidative Stress/drug effects , Inflammation/chemically induced , Inflammation/pathology , Lipid Metabolism/drug effects
4.
Sci Total Environ ; 946: 174264, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936716

ABSTRACT

Benzotriazole ultraviolet absorbents (BUAs) of emerging concern were recently monitored in seawater and sediments from the Bohai Sea (BS) and North Yellow Sea (NYS), which are impacted by human activities, to elucidate their regional occurrence patterns, phase distributions, and contamination profiles. Although environmental variables such as sedimentary organic carbon, particle size, and salinity, as well as hydrological conditions, affected the environmental occurrence of BUAs in the BS and NYS, the source dependence of BUA distributions associated with urban impacts and riverine inputs was highlighted. Substantial spatial variability in the composition patterns and contamination profiles of BUAs identified through correlation and principal component analyses were likely caused by region-specific sources and characteristics. The distribution of target BUAs between the sediment and seawater phases showed no dependence on the octanol-water partition coefficient (KOW) but exhibited marked spatial variations. The diversity of BUA sorption behaviors was further explained by the total organic carbon (TOC)-normalized distribution coefficient (KTOC). Classic logKTOC-logKOW linear relationships accurately predicted the phase distributions of UV-326, UV-328, and UV-234, but deviations were found for lighter and heavier BUAs, possibly due to the influences of physical disturbance and microparticle binding.

5.
Adv Sci (Weinh) ; : e2403414, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790136

ABSTRACT

The colon is the largest compartment of the immune system, with innate immune cells exposed to antigens in the environment. However, the mechanisms by which the innate immune system is instigated are poorly defined in colorectal cancer (CRC). Here, a population of CD16+ neutrophils that specifically accumulate in CRC tumor tissues by imaging mass cytometry (IMC), immune fluorescence, and flow cytometry, which demonstrated pro-tumor activity by disturbing natural killer (NK) cells are identified. It is found that these CD16+ neutrophils possess abnormal cholesterol accumulation due to activation of the CD16/TAK1/NF-κB axis, which upregulates scavenger receptors for cholesterol intake including CD36 and LRP1. Consequently, these region-specific CD16+ neutrophils not only competitively inhibit cholesterol intake of NK cells, which interrupts NK lipid raft formation and blocks their antitumor signaling but also release neutrophil extracellular traps (NETs) to induce the death of NK cells. Furthermore, CD16-knockout reverses the pro-tumor activity of neutrophils and restored NK cell cytotoxicity. Collectively, the findings suggest that CRC region-specific CD16+ neutrophils can be a diagnostic marker and potential therapeutic target for CRC.

6.
Insects ; 15(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786895

ABSTRACT

The CRISPR/Cas9 gene-editing system is a standard technique in functional genomics, with widespread applications. However, the establishment of a CRISPR/Cas9 system is challenging. Previous studies have presented numerous methodologies for establishing a CRISPR/Cas9 system, yet detailed descriptions are limited. Additionally, the difficulties in obtaining the necessary plasmids have hindered the replication of CRISPR/Cas9 techniques in other laboratories. In this study, we share a detailed and simple CRISPR/Cas9 knockout system with optimized steps. The results of gene knockout experiments in vitro and in vivo show that this system successfully knocked out the target gene. By sharing detailed information on plasmid sequences, reagent codes, and methods, this study can assist researchers in establishing gene knockout systems.

7.
BMC Public Health ; 24(1): 1413, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802838

ABSTRACT

OBJECTIVE: To explore the factors affecting delayed medical decision-making in older patients with acute ischemic stroke (AIS) using logistic regression analysis and the Light Gradient Boosting Machine (LightGBM) algorithm, and compare the two predictive models. METHODS: A cross-sectional study was conducted among 309 older patients aged ≥ 60 who underwent AIS. Demographic characteristics, stroke onset characteristics, previous stroke knowledge level, health literacy, and social network were recorded. These data were separately inputted into logistic regression analysis and the LightGBM algorithm to build the predictive models for delay in medical decision-making among older patients with AIS. Five parameters of Accuracy, Recall, F1 Score, AUC and Precision were compared between the two models. RESULTS: The medical decision-making delay rate in older patients with AIS was 74.76%. The factors affecting medical decision-making delay, identified through logistic regression and LightGBM algorithm, were as follows: stroke severity, stroke recognition, previous stroke knowledge, health literacy, social network (common factors), mode of onset (logistic regression model only), and reaction from others (LightGBM algorithm only). The LightGBM model demonstrated the more superior performance, achieving the higher AUC of 0.909. CONCLUSIONS: This study used advanced LightGBM algorithm to enable early identification of delay in medical decision-making groups in the older patients with AIS. The identified influencing factors can provide critical insights for the development of early prevention and intervention strategies to reduce delay in medical decisions-making among older patients with AIS and promote patients' health. The LightGBM algorithm is the optimal model for predicting the delay in medical decision-making among older patients with AIS.


Subject(s)
Algorithms , Clinical Decision-Making , Ischemic Stroke , Humans , Aged , Female , Male , Cross-Sectional Studies , Logistic Models , Ischemic Stroke/therapy , Middle Aged , Aged, 80 and over , Health Literacy/statistics & numerical data
8.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698399

ABSTRACT

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Subject(s)
Hydrogels , Liposomes , Polyethylene Glycols , Trypsin , Xanthones , Liposomes/chemistry , Animals , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Humans , Trypsin/metabolism , Trypsin/chemistry , Female , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Breast Neoplasms/drug therapy , Proteolysis
9.
J Investig Med ; 72(5): 414-424, 2024 06.
Article in English | MEDLINE | ID: mdl-38557364

ABSTRACT

Ferroptosis is a recently identified and evolutionarily conserved form of programmed cell death. This process is initiated by an imbalance in iron metabolism, leading to an overload of ferrous ions. These ions promote lipid peroxidation in the cell membrane through the Fenton reaction. As the cell's antioxidant defenses become overwhelmed, a fatal buildup of reactive oxygen species (ROS) occurs, resulting in the rupture of the plasma membrane. Ferroptosis is implicated in conditions such as ischemia-reperfusion injuries and a range of cancers. In our research, we explored ferroptosis in myelodysplastic syndromes (MDS) by measuring iron levels, transferrin receptor expression, and glutathione peroxidase 4 (GPX4) mRNA. Our findings revealed that MDS patients had significantly higher Fe2+ levels in CD33+ cells and increased transferrin receptor mRNA compared to healthy individuals. GPX4 expression was also higher in MDS but not statistically significant. To investigate potential treatments for myeloid hematological diseases through ferroptosis induction, we treated the myelodysplastic syndrome cell line (SKM-1) and two myeloid leukemia cell lines (KG-1 and K562) with erastin, an iron transfer inducer. We observed that erastin treatment led to glutathione depletion, reduced GPX4 activity, and increased ROS, culminating in cell death by ferroptosis. Furthermore, combining erastin with azacitidine demonstrated a synergistic effect on MDS and leukemia cell lines, suggesting a promising approach for treating these hematological conditions with this drug combination. Our experiments confirm erastin's ability to induce ferroptosis in MDS and highlight its potential synergistic use with azacitidine for treatment.


Subject(s)
Ferroptosis , Myelodysplastic Syndromes , Piperazines , Ferroptosis/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Humans , Male , Female , Piperazines/pharmacology , Piperazines/therapeutic use , Cell Line, Tumor , Aged , Disease Progression , Middle Aged , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Iron/metabolism , Receptors, Transferrin/metabolism , Aged, 80 and over , Adult , Reactive Oxygen Species/metabolism
10.
Orthod Craniofac Res ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581082

ABSTRACT

OBJECTIVES: To propose a method for evaluating the coordination of maxillomandibular alveolar arch in transverse dimension with cone-beam computed tomography (CBCT) and to apply this method to subjects with normal occlusion at different dentition stages or transverse discrepancy. MATERIALS AND METHODS: Digital data of 130 patients with normal occlusion at different dentition stages or transverse discrepancy were collected for three-dimensional reconstruction. The patients with normal occlusion were divided into Group 1 (>16 years) and Group 2 (≤16 years) based on their age. Adult patients with posterior crossbite were divided into the Group 3. According to the proposed method, the average alveolar arch coordination angle (AACA) and other parameters were analysed in each group. Group 1 was considered as the control group and compared with Group 2 and Group 3. RESULTS: Significant differences were observed in the maxillary posterior segment width among patients with normal occlusion. Group 3 demonstrated increased AACA and mandibular alveolar arch width compared with the normal occlusion group. Pearson correlation analysis indicated a positive relationship between maxillomandibular alveolar arch widths in the normal occlusion groups, with a strong correlation between AACA and the disparity in maxillomandibular widths. CONCLUSION: Adults with normal occlusion exhibit significantly wider maxillary posterior alveolar arches than adolescents, with no marked difference in mandibular widths. The posterior crossbite group showed broader mandibular alveolar arches. There was a strong correlation between AACA and the difference in maxillomandibular widths. This study's method shows potential value for orthodontic transverse diagnosis.

11.
Tissue Cell ; 88: 102358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537379

ABSTRACT

OBJECTIVE: With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN: Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS: Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS: In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.


Subject(s)
Cell Differentiation , Fibroblasts , Gingiva , Osteogenesis , Animals , Mice , Fibroblasts/cytology , Fibroblasts/metabolism , NIH 3T3 Cells , Humans , Gingiva/cytology , Tissue Engineering/methods , Osteoblasts/cytology , Osteoblasts/metabolism
12.
Sensors (Basel) ; 24(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38544140

ABSTRACT

Long-span bridges are susceptible to damage, aging, and deformation in harsh environments for a long time. Therefore, structural health monitoring (SHM) systems need to be used for reasonable monitoring and maintenance. Among various indicators, bridge displacement is a crucial parameter reflecting the bridge's health condition. Due to the simultaneous bearing of multiple environmental loads on suspension bridges, determining the impact of different loads on displacement is beneficial for the better understanding of the health conditions of the bridges. Considering the fact that extreme gradient boosting (XGBoost) has higher prediction performance and robustness, the authors of this paper have developed a data-driven approach based on the XGBoost model to quantify the impact between different environmental loads and the displacement of a suspension bridge. Simultaneously, this study combined wavelet threshold (WT) denoising and the variational mode decomposition (VMD) method to conduct a modal decomposition of three-dimensional (3D) displacement, further investigating the interrelationships between different loads and bridge displacements. This model links wind speed, temperature, air pressure, and humidity with the 3D displacement response of the span using the bridge monitoring data provided by the GNSS and Earth Observation for Structural Health Monitoring (GeoSHM) system of the Forth Road Bridge (FRB) in the United Kingdom (UK), thus eliminating the temperature time-lag effect on displacement data. The effects of the different loads on the displacement are quantified individually with partial dependence plots (PDPs). Employing testing, it was found that the XGBoost model has a high predictive effect on the target variable of displacement. The analysis of quantification and correlation reveals that lateral displacement is primarily affected by same-direction wind, showing a clear positive correlation, and vertical displacement is mainly influenced by temperature and exhibits a negative correlation. Longitudinal displacement is jointly influenced by various environmental loads, showing a positive correlation with atmospheric pressure, temperature, and vertical wind and a negative correlation with longitudinal wind, lateral wind, and humidity. The results can guide bridge structural health monitoring in extreme weather to avoid accidents.

13.
Int J Biol Macromol ; 262(Pt 1): 129927, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311130

ABSTRACT

To promote bone repair, it is desirable to develop three-dimensional multifunctional fiber scaffolds. The densely stacked and tightly arranged conventional two-dimensional electrospun fibers hinder cell penetration into the scaffold. Most of the existing three-dimensional structural materials are isotropic and monofunctional. In this research, a Janus nanofibrous scaffold based on silk fibroin/polycaprolactone (SF/PCL) was fabricated. SF-encapsulated SeNPs demonstrated stability and resistance to aggregation. The outside layer (SF/PCL/Se) of the Janus nanofiber scaffold displayed a structured arrangement of fibers, facilitating cell growth guidance and impeding cell invasion. The inside layer (SF/PCL/HA) featured a porous structure fostering cell adhesion. The Janus fiber scaffold containing SeNPs notably suppressed S. aureus and E. coli activities, correlating with SeNPs concentration. In vitro, findings indicated considerable enhancement in alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts and upregulation of genes linked to osteogenic differentiation with exposure to the SF/PCL/HA/Se Janus nanofibrous scaffold. Moreover, in vivo, experiments demonstrated successful critical bone defect repair in mouse skulls using the SF/PCL/HA/Se Janus nanofiber scaffold. These findings highlight the potential of the SF/PCL-based Janus nanofibrous scaffold, integrating SeNPs and nHA, as a promising biomaterial in bone tissue engineering.


Subject(s)
Fibroins , Nanofibers , Mice , Animals , Fibroins/pharmacology , Fibroins/chemistry , Tissue Scaffolds/chemistry , Osteogenesis , Porosity , Escherichia coli , Staphylococcus aureus , Tissue Engineering/methods , Polyesters/chemistry , Bone Regeneration , Nanofibers/chemistry , Silk/chemistry
14.
Cell Metab ; 36(3): 598-616.e9, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38401546

ABSTRACT

Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2ß1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2ß1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Thrombosis , Humans , Mice , Animals , Integrin alpha2beta1/genetics , Integrin alpha2beta1/metabolism , Collagen/metabolism , Blood Platelets/metabolism , COVID-19/metabolism
15.
Proc Natl Acad Sci U S A ; 121(6): e2313092121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300870

ABSTRACT

Root development is tightly controlled by light, and the response is thought to depend on signal transmission from the shoot. Here, we show that the root apical meristem perceives light independently from aboveground organs to activate the light-regulated transcription factor ELONGATED HYPOCOTYL5 (HY5). The ROS balance between H2O2 and superoxide anion in the root is disturbed under darkness with increased H2O2. We demonstrate that root-derived HY5 directly activates PER6 expression to eliminate H2O2. Moreover, HY5 directly represses UPBEAT1, a known inhibitor of peroxidases, to release the expression of PERs, partially contributing to the light control of ROS balance in the root. Our results reveal an unexpected ability in roots with specific photoreception and provide a mechanistic framework for the HY5-mediated interaction between light and ROS signaling in early root development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Hydrogen Peroxide/metabolism , Light , Gene Expression Regulation, Plant
16.
J Colloid Interface Sci ; 662: 1063-1074, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38369419

ABSTRACT

Polyacrylamide (PAM) hydrogels have garnered significant attention due to their unique swelling properties, biocompatibility, and stability, resulting in them being promising candidates for various applications, ranging from drug delivery to tissue engineering. However, traditional PAM hydrogels suffer from low strength and poor toughness, which limits their widespread use. In this study, based on the theory of filler-reinforced composites, we introduced ordered sulfonated polystyrene (SPS) particles into PAM hydrogels using electric field-assisted techniques. The effects of the geometric dimensions and filling concentration of SPS particles on thermal stability, swelling/deswelling behavior, and mechanical properties of composite hydrogels were investigated. When filled with ordered 100 nm SPS particles at a concentration of 2.0 g·L-1, the resulting SPS/PAM composite exhibited improved water retention capacity, as well as a fracture elongation of 316 % and a tensile strength of 23 kPa. These findings in the paper provide valuable insights into the understanding of PAM hydrogels and open up new avenues for the development of advanced hydrogel-based systems with enhanced performance and functionality.

17.
Acta Biomater ; 176: 432-444, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38185232

ABSTRACT

The use of bone substitute materials is crucial for the healing of large bone defects. Immune response induced by bone substitute materials is essential in bone regeneration. Prior research has mainly concentrated on innate immune cells, such as macrophages. Existing research suggests that T lymphocytes, as adaptive immune cells, play an indispensable role in bone regeneration. However, the mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. This study demonstrates that CD4+ T cells are indispensable for ectopic osteogenesis by biphasic calcium phosphate (BCP). Subsequently, the recruitment of CD4+ T cells is closely associated with the activation of calcium channels in macrophages by BCP to release chemokines Ccl3 and Ccl17. Finally, these recruited CD4+ T cells are predominantly Tregs, which play a significant role in ectopic osteogenesis by BCP. These findings not only shed light on the immune-regenerative process after bone substitute material implantation but also establish a theoretical basis for developing bone substitute materials for promoting bone tissue regeneration. STATEMENT OF SIGNIFICANCE: Bone substitute material implantation is essential in the healing of large bone defects. Existing research suggests that T lymphocytes are instrumental in bone regeneration. However, the specific mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. In this study, we demonstrate that activation of calcium channels in macrophages by biphasic calcium phosphate (BCP) causes them to release the chemokines Ccl3 and Ccl17 to recruit CD4+ T cells, predominantly Tregs, which play a crucial role in ectopic osteogenesis by BCP. Our findings provide a theoretical foundation for developing bone substitute material for bone tissue regeneration.


Subject(s)
Bone Substitutes , Bone Substitutes/pharmacology , Bone Regeneration , Hydroxyapatites/pharmacology , Calcium Channels , Chemokines , Osteogenesis , Calcium Phosphates/pharmacology
18.
Insect Mol Biol ; 33(3): 173-184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38238257

ABSTRACT

Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.


Subject(s)
Bombyx , Insect Proteins , Paired Box Transcription Factors , Animals , Bombyx/classification , Bombyx/genetics , Bombyx/growth & development , Bombyx/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/growth & development , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Phylogeny , RNA Interference , Silk/genetics , Silk/metabolism
19.
Micromachines (Basel) ; 15(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38258225

ABSTRACT

Ceramic matrix composites have the advantages of low density, high specific strength, high specific die, high-temperature resistance, wear resistance, chemical corrosion resistance, etc., which are widely used in aerospace, energy, transportation, and other fields. CMCs have become an important choice for engine components and other high-temperature component manufacturing. However, ceramic matrix composite is a kind of multi-phase structure, anisotropy, high hardness material, due to the brittleness of the ceramic matrix, the weak bonding force between fiber and matrix, and the anisotropy of composite material. Burr, delamination, tearing, chips, and other surface damage tend to generate in the machining, resulting in surface quality and strength decline. This paper reviewed the latest abrasive machining technology for SiC ceramic composites. The characteristics and research directions of the main abrasive machining technology, including grinding, laser-assisted grinding, ultrasonic-assisted grinding, and abrasive waterjet machining, are introduced first. Then, the commonly used numerical simulation research for modeling and simulating the machining of ceramic matrix composites is briefly summarized. Finally, the processing difficulties and research hotspots of ceramic matrix composites are summarized.

20.
Signal Transduct Target Ther ; 9(1): 17, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212307

ABSTRACT

Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Embryonic Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...