Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Pollut ; 357: 124426, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917945

ABSTRACT

Microplastics (MPs) can enter aquatic food webs through direct ingestion from the environment or indirectly via trophic transfer, but their fate and biological effects within local freshwater food chains remain largely unexplored. In this study, we conducted the first investigation on the trophic transfer and impacts of fluorescently labeled polystyrene microplastics (PS-MPs) (100-nm and 10-µm) in a model freshwater food chain consisting of the snail Bellamya aeruginosa and the commercially important fish Mylopharyngodon piceus, both prevalent in Chinese freshwater ecosystems. Quantitative analysis revealed substantial accumulation of MPs in B. aeruginosa, reaching an equilibrium state within 12 h of exposure. While steady-state was not observed, a pronounced time-dependent bioaccumulation of MPs was evident in M. piceus over a five-week period following dietary exposure through the consumption of contaminated B. aeruginosa. Notably, MPs of both sizes underwent translocation from the gastrointestinal tract to the muscle tissue in M. piceus. High-throughput sequencing of the gut microbiota revealed that exposure to 100-nm MPs significantly altered the microbial community composition in M. piceus, and both particle sizes led to increased relative abundance of potentially pathogenic bacterial genera. Our findings provide novel insights into the trophic transfer, tissue accumulation, and biological impacts of MPs in a model freshwater food chain, highlighting the need for further research to assess the ecological and food safety risks associated with microplastic pollution in freshwater environments.

2.
Sensors (Basel) ; 22(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35161934

ABSTRACT

V2X is used for communication between the surrounding pedestrians, vehicles, and roadside units. In the Forward Collision Warning (FCW) of Phase One scenarios in V2X, multimodal modalities and multiple warning stages are the two main warning strategies of FCW. In this study, three warning modalities were introduced, namely auditory warning, visual warning, and haptic warning. Moreover, a multimodal warning and a novel multi-staged HUD warning were established. Then, the above warning strategies were evaluated in objective utility, driving performance, visual workload, and subjective evaluation. As for the driving simulator of the experiment, SCANeR was adopted to develop the driving scenario and an open-cab simulator was built based on Fanatec hardware. Kinematic parameters, location-related data and eye-tracking data were then collected. The results of the Analysis of Variance (ANOVA) indicate that the multimodal warning is significantly better than that of every single modality in utility and longitudinal car-following performance, and there is no significant difference in visual workload between multimodal warning and the baseline. The utility and longitudinal driving performance of multi-staged warning are also better than those of single-stage warning. Finally, the results provide a reference for the warning strategy design of the FCW in Intelligent Connected Vehicles.


Subject(s)
Automobile Driving , Pedestrians , Accidents, Traffic/prevention & control , Computer Simulation , Humans , Protective Devices , Reaction Time , Workload
SELECTION OF CITATIONS
SEARCH DETAIL
...