Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 905: 167059, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709078

ABSTRACT

Exposure to disinfection by-products (DBPs) has been found to induce a range of toxic effects in aquatic organism. Previous studies have consistently demonstrated that a majority of DBPs have the ability to induce in vivo toxicity in aquatic organisms. However, the impact of DBPs on the metabolic processes of Daphnia magna (D. magna) and the underlying molecular toxicity mechanisms are still not well understood. Therefore, we investigated the effects of 14 DBPs on two oxidative stress enzymes and malondialdehyde (MDA) levels in D. magna. Additionally, we employed molecular docking to simulate the toxicity of DBPs to D. magna at the molecular level. This comprehensive analysis allowed us to gain further insights into the toxicity of DBPs on D. magna. The results showed that among the aliphatic DBPs, the more bromine substituents, the lower the toxicity effect, and it's opposite in the aromatic DBPs. In the detection of oxidative stress level, catalase (CAT) enzyme and superoxide dismutase (SOD) enzyme in D. magna under compound stress showed a low increase and decrease with the increase of concentration. The level of MDA showed a positive correlation with the concentration. In the last, molecular docking simulations have shown promise in predicting the toxicity of DBPs and providing insights into their toxic effects to a certain extent, and the docking situation of P53 is slightly different. Hence, it is imperative to further regulate the presence of aromatic DBPs due to their pronounced toxic effects on D. magna, and these simulations can be complemented with actual experiments to enhance our understanding of the toxicity mechanisms of DBPs.


Subject(s)
Disinfection , Water Pollutants, Chemical , Animals , Molecular Docking Simulation , Daphnia , Oxidative Stress , Oxidation-Reduction , Water Pollutants, Chemical/metabolism
2.
Chemosphere ; 317: 137795, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36632953

ABSTRACT

Antibiotics have received much attention owing to their ecotoxicity toward nontarget aquatic creatures. However, the mode of action (MOA) of toxicity against nontarget organisms is unclear in some aquatic organisms. In this study, the comparison of toxicities through interspecies correlations, excess toxicity calculated from toxicity ratio, and quantitative structure-activity relationship (QSAR) was carried out to investigate the MOAs for 14 antibiotics among Daphnia magna, Vibrio fischeri, and Pseudokirchneriella subcapitata. The results showed that interspecies toxicity correlations were very poor between any two of the three species for the 14 antibiotics. The toxicity ratio revealed that most antibiotics exhibited excess toxicity to algae and Daphnia magna but not to V. fischeri, demonstrating that some antibiotics share the same MOA, but some antibiotics share different MOAs among the three different levels of species. P. subcapitata was the most sensitive species, and V. fischeri was the least sensitive species. This is because of the differences in the biouptake and interactions of antibiotics with the target receptors between the three different trophic levels of the species. Molecular docking simulations suggested that the toxicity of antibiotics depends highly on their interactions with target receptors through hydrogen bonds, electrostatic or polar interactions, π bond interactions, and van der Waals forces. QSAR models demonstrated that hydrogen bonding and electrophilicity/nucleophilicity play key roles in the interaction of antibiotics with different receptors in the three species. The toxic mechanisms of antibiotics are attributed to the interactions between electrophilic antibiotics and biological nucleophiles, and hydrogen-bond interactions. These results are valuable for understanding the toxic mechanisms and MOA of the three different levels of species.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/toxicity , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Aquatic Organisms , Aliivibrio fischeri , Daphnia
3.
Sci Total Environ ; 616-617: 491-499, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29127803

ABSTRACT

The acute toxicity of organic pollutants to fish, Daphnia magna, Tetrahymena pyriformis, and Vibrio fischeri was investigated. The results indicated that the Toxicity Ratio (TR) threshold of log TR =1, which has been based on the distribution of toxicity data to fish, can also be used to discriminate reactive or specifically acting compounds from baseline narcotics for Daphnia magna and Vibrio fischeri. A log TR=0.84 is proposed for Tetrahymena pyriformis following investigation of the relationships between the species sensitivity and the absolute averaged residuals (AAR) between the predicted baseline toxicity and the experimental toxicity. Less inert compounds exhibit relatively higher toxicity to the lower species (Tetrahymena pyriformis and Vibrio fischeri) than the higher species (fish and Daphnia magna). A greater number of less inert compounds with log TR greater than the thresholds was observed for Tetrahymena pyriformis and Vibrio fischeri. This may be attributed to the hydrophilic compounds which may pass more easily through cell membranes than the skin or exoskeleton of organisms and have higher bioconcentration factors in the lower species, leading to higher toxicity. Most of classes of chemical associated with excess toxicity to one species also exhibited excess toxicity to other species, however, a few classes with excess toxicity to one species exhibiting narcotic toxicity to other species and thus may have different MOAs between species. Some ionizable compounds have log TR much lower than one because of the over-estimated log KOW. The factors that influence the toxicity ratio calculated from baseline level are discussed in this paper.


Subject(s)
Aliivibrio fischeri/drug effects , Daphnia/drug effects , Fishes , Tetrahymena pyriformis/drug effects , Toxicity Tests, Acute , Animals , Hydrophobic and Hydrophilic Interactions
4.
Chemosphere ; 147: 382-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774303

ABSTRACT

The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water.


Subject(s)
Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Animals , Hydrogen-Ion Concentration , Ions/analysis , Models, Biological
5.
Environ Toxicol Pharmacol ; 40(1): 292-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26186523

ABSTRACT

Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity.


Subject(s)
Chlorophyta/drug effects , Fishes , Organic Chemicals/toxicity , Animals , Species Specificity
6.
Chemosphere ; 128: 111-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25681569

ABSTRACT

The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds.


Subject(s)
Ecotoxicology , Fishes , Organic Chemicals/toxicity , Animals , Hazardous Substances/toxicity , Male , Rats
7.
Chemosphere ; 120: 16-22, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462296

ABSTRACT

The quality of the biological activity data is of great importance for the development of algal quantitative structure-activity relationship (QSAR) models. However, a number of algal QSAR models in the literature were developed based on toxicity data without considering the response endpoints, exposure periods and species sensitivity. In this paper, 2323 algal toxicity data (log 1/EC50) in different toxicity response endpoints for 1081 compounds to 26 algal species within different exposure periods (14 and 15 min; 24, 48, 72, 96, 168 and 192 h) were used to evaluate the quality of the toxicity data to green algae. Analysis of 72 h toxicity to algae showed that the closed test had the same sensitivity as the open test for most of the test compounds, but a significant difference was observed for a few compounds. The overall average difference for all compounds ranges from 0.15 to 0.43 log units between toxicity endpoints (yield­growth rate). The relationships between exposure periods of 24, 48, 72 and 96 h indicated that 48 h exposure period is the most sensitive for algal growth inhibition test, and its sensitivity is 0.25 log units greater than 72 and 96 h exposure periods, respectively. Interspecies relationships showed that some algal species have very close sensitivity (e.g. Pseudokirchneriella subcapitata and Chlorella pyrenoidosa or Chlorella vulgaris and Scenedesmus obliquus, respectively), whereas some species have significantly different sensitivity (e.g. P. subcapitata and S. obliquus). Relationships between toxicity and hydrophobicity demonstrated that no difference was observed for non-polar narcotics within different exposure periods (24, 48, 72, and 96 h) or response variables (yield and growth rate). For polar narcotics, in contrast, algal toxicity is dependent on algal species and is related to the response variables and exposure period. We cannot expect significant QSAR models between algal toxicity and descriptors without considering species sensitivity, exposure periods and response endpoints.


Subject(s)
Chlorophyta/drug effects , Hazardous Substances/toxicity , Hydrophobic and Hydrophilic Interactions/drug effects , Quantitative Structure-Activity Relationship , Chlorophyta/physiology , Species Specificity , Time Factors
8.
Chemosphere ; 120: 660-73, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462311

ABSTRACT

The toxicity data of 2624 chemicals to fish, Daphniamagna, Tetrahymenapyriformis and Vibriofischeri were used to investigate the effects of species sensitivity and bioconcentration on excess toxicity. The results showed that 47 chemical classes were identified as having the same modes of action (MOAs) to all four species, but more than half of the classes were identified as having different MOAs. Difference in chemical MOAs is one of the reasons resulting in the difference in toxic effect to these four species. Other important reasons are the difference in sensitivity and bioconcentration of species. Among the four species, V. fischeri has the most compounds identified as reactive MOA. This may be due to some compounds can be easily absorbed into the bacteria, react with the DNA or proteins, disrupt the normal function of the cell and exhibit significantly greater toxicity to the bacteria. On the other hand, the skin and lipid content of aqueous organisms can strongly inhibit the bio-uptake for some reactive compounds, resulting in a less toxic effect than expected. D. magna is the most sensitive species and T. pyriformis is the least sensitive species of the four species. For a comparison of interspecies toxicity, we need to use the same reference threshold of excess toxicity. However, some reactive compounds may be identified as baseline or less inert compounds for low sensitive species from the threshold developed from high sensitive species. The difference in the discrimination of excess toxicity to different species is not only because of the difference in MOAs for some compounds, but also due to the difference in sensitivity and bioconcentration.


Subject(s)
Aliivibrio fischeri/drug effects , Daphnia/drug effects , Fishes/metabolism , Narcotics/pharmacology , Organic Chemicals/toxicity , Tetrahymena pyriformis/drug effects , Aliivibrio fischeri/metabolism , Animals , Lethal Dose 50 , Linear Models , Luminescent Measurements , Models, Biological , Organic Chemicals/classification , Species Specificity , Structure-Activity Relationship , Tetrahymena pyriformis/growth & development
9.
Environ Toxicol Pharmacol ; 38(2): 388-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25124515

ABSTRACT

Bioconcentration factor (BCF) is one of the most important parameters in the assessment of the potential hazard of new compounds in aquatic ecosystems. However, the factors that influence the estimation of BCFs for a large variety of chemicals have not been systemically investigated in the literature. In this paper, a large BCF data set containing 1088 nonionic and ionic organic compounds was used to study the relationship between BCF and molecular descriptors and influencing factors. Step-by-step analysis on the class-based compounds showed that nonlinear Gaussian and Sigmoid equations could well describe relationships between logBCF and distribution coefficient for the compounds over a wide range of structures and chloro or/and bromo substituted aromatics, respectively. The quality of fit from the nonlinear models is better than the BCFBAF method from the Epi Suite program for the class-based compounds. Systemic prediction deviations have been observed for some types of compounds. The reasons for systemic deviations for these compounds can be attributed to the difference in bioconcentration mechanism for hydrophilic compounds, transformation for hydroxyphenols and three-membered rings, physical barrier for long chain and large polycyclic compounds, difference in determining methods of BCF (kinetic and steady-state), bioavailability for highly hydrophobic compounds and accuracy of BCF measurements for compounds with extremely high or low BCFs. These factors are important and should be considered in any reliable bioconcentration prediction.


Subject(s)
Models, Chemical , Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Animals , Fishes/metabolism , Hydrophobic and Hydrophilic Interactions , Nonlinear Dynamics , Normal Distribution
10.
Regul Toxicol Pharmacol ; 70(1): 98-106, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24973504

ABSTRACT

The aim of this paper was to investigate baseline toxicity to rats and effect of exposure routes on toxicity in rats and fish. In this paper, 1588 industrial chemicals were selected to investigate baseline toxicity to rats. The results showed that rat toxicity varies around a constant for classified compounds or homologues. The toxic contributions of substituted functional groups have been calculated and alkanes were used as baseline toxicity. The toxic contributions, equal to toxic ratios (TR), show that small changes in chemical structure can result in different toxic effect in rat toxicity. However, this situation has not been observed in fish toxicity because the threshold of excess toxicity (e.g. log TR=1) was too high to distinguish differences in toxicity. Very close critical body residues (CBRs) calculated from percentage of absorption and bioconcentration factors indicate that most of aliphatic chemicals may share the same modes of toxic action between rat and fish species. The high estimation error of bioconcentration factor calculated from computer programs for some compounds suggests that classification of excess toxicity should be based on the CBRs, rather than the TR because the TR is closely related to the exposure routes.


Subject(s)
Environmental Exposure/adverse effects , Organic Chemicals/toxicity , Toxicity Tests/methods , Animals , Fishes , Organic Chemicals/chemistry , Rats , Species Specificity
11.
Sci Total Environ ; 484: 137-45, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24698800

ABSTRACT

Toxic ratio TR is a valuable tool in the discrimination of excess toxicity from baseline effect. Although some authors realized that internal effect concentration or critical body residual (CBR) calculated from bioconcentration factor (BCF) should be used in the TR, the effect of BCF on the discrimination of excess toxicity from baseline effect has not been investigated. In this paper, 951 acute toxicity data to fish (LC50) and 1088 BCFs were used to investigate the relationship between TR and BCF. The results showed that some compounds identified as reactive compounds exhibit excess toxicity, but some do not. BCF is closely related to TR and can significantly affect the TR value. The real excess toxicity which is used to identify reactive chemicals from baseline should be based on the toxic ratio of internal effect concentrations, rather than on the ratio of external effect concentrations, TR. The use of LC50 alone to determine TR can result in errors in TR because toxicokinetics (as estimated by the BCF) are ignored. The foundation in the discrimination of excess toxicity from baseline effect is based on the linear relationship between log BCF and hydrophobicity expressed as log KOW. However, log BCF is not linearly related with log KOW for all the compounds. The BCFs with log KOW >7 or <0 are either overestimated or underestimated by the linear baseline BCF model. Parallel lines are observed from calculated log CBR values for baseline and less inert compounds. The log BCF values overestimated or underestimated by log KOW from the baseline BCF model can result in mis-prediction and mis-classification among baseline, less inert and reactive compounds.


Subject(s)
Models, Biological , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Data Collection , Dose-Response Relationship, Drug , Fishes/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Theoretical , Toxicity Tests/standards , Water Pollutants, Chemical/metabolism
12.
Int J Radiat Biol ; 77(5): 637-42, 2001 May.
Article in English | MEDLINE | ID: mdl-11382343

ABSTRACT

PURPOSE: To explore the photophysical and photochemical properties of allophycocyanin (APC) and contribute to the understanding of the molecular mechanism of APC photosensitization. MATERIALS AND METHODS: Laser-flash photolytic and pulse radiolytic techniques were used for the first time to characterize the transient intermediates involved in APC photochemistry and photophysics. The excited triplet state and radical cation of APC were identified by acetone sensitization and one-electron oxidation. RESULTS: The 248-nm laser-flash photolysis of APC in N(2)-saturated aqueous solution (pH 7.0) yields the triplet state and radical cation of APC. The APC radical cations were generated by ionization via a monophotonic process, with a quantum yield of 0.17. CONCLUSIONS: APC can undergo both photo-excitation and photo-ionization under the present experimental conditions. These new findings suggest that APC has the potential to act as both a type I and type II photosensitizer.


Subject(s)
Phycocyanin/chemistry , Cyanobacteria/chemistry , Lasers , Nitrogen/chemistry , Nitrogen Oxides/chemistry , Oxygen/chemistry , Photolysis , Photosensitizing Agents/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...