Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Toxicology ; 506: 153866, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909936

ABSTRACT

Tetrabromobisphenol S (TBBPS) is a brominated flame retardants (BFRs). TBBPS is widely used as a new type of BFR to replace TBBPA. Here, we used gastric cells as a model for evaluating the effect of TBBPS on the toxicology of gastric cells. Biochemical assays such as indirect immunofluorescence, cell proliferation assay were performed to analyze the toxicological effects of TBBPS on gastric cells. Cell proliferation analysis showed that TBBPS caused inhibition of gastric cell proliferation, and TBBPS induced gastric cell death. Further analysis showed that TBBPS led to ferroptosis and senescence of gastric cells by detecting ferroptosis-related marker molecules. Further work showed that TBBPS treatment resulted in lowered ferritin expression alongside heightened transferrin levels, which may be a potential molecular mechanism for TBBPS-induced ferroptosis and senescence in gastric cells. Here, our team investigates the effects of TBBPS on gastric cells in an in vitro model, and found that TBBPS caused toxicological damage to gastric cells. This study indicates potential toxic effects of TBBPS on the gastric cells, thereby providing a basis for further research into the toxicology of TBBPS.

2.
ACS Appl Mater Interfaces ; 16(25): 32611-32618, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864643

ABSTRACT

Membrane with remarkable proton conductance and selectivity plays a key role in obtaining high vanadium flow battery (VFB) performance. In this work, the trade-off effect between proton conductance and vanadium ion blocking was overcome by the introduction of a cross-linking structure to prepare covalent cross-linked fluorine-containing sulfonated polyimide (CFSPI-PVA) membranes. Herein, the CFSPI-PVA-15 membrane possesses excellent comprehensive properties, including acceptable area resistance (0.21 Ω cm2), lower vanadium ion permeability (0.76 × 10-7 cm2 min-1), and remarkable proton selectivity (3.11 × 105 min cm-3) compared with the commercial Nafion 212 membrane. At the same time, the CFSPI-PVA-15 membrane exhibits higher coulomb efficiencies (97.26%-99.34%) and energy efficiencies (68.65%-88.11%) and a longer self-discharge duration (29.2 h) in contrast with the Nafion 212 membrane. Moreover, 500 cycles of the CFSPI-PVA-15 membrane at 160 mA cm-2 are also stably executed. The internal reasons for the improved chemical stability of the CFSPI-PVA-15 membrane are clarified from theoretical calculations with the mean square displacement value and fractional free volume. Therefore, the CFSPI-PVA-15 membrane exhibits great potential for application in VFB.

3.
Huan Jing Ke Xue ; 45(6): 3329-3340, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897755

ABSTRACT

With rapid urbanization and human activities exacerbating threats to the degradation of various ecosystem services in modern urban agglomerations, the exploration of the state of ecological security at the scale of urban agglomerations is of great significance. This study considered the Lanzhou-Xining Urban Agglomeration as the research area, based on the land use data in 2000, 2005, 2010, 2015, and 2020. At the same time, the landscape ecological risk index was introduced. The land use change characteristics of the Lanzhou-Xining Urban Agglomeration were analyzed by using the land use transfer matrix, the value per unit area equivalent factor method, and the bivariate spatial autocorrelation analysis method to elucidate the impacts of the changes in the ecological risk index induced by the land use transition on the value of ecosystem services. This study analyzed the land use change characteristics of the Lanzhou-Xining Urban Agglomeration and elucidated the impacts of changes in the ecological risk index on the value of ecosystem services caused by land use transformation. The results showed that:① During the period from 2000 to 2020, the land use types of the Lanzhou-Xining Urban Agglomeration were mainly dominated by grassland, cropland, and forest land. The construction land area had expanded significantly mainly from cropland and grassland, and the six land use types had strong cross-transformation. The total area of land use change was 6 646.05 km2. ② In terms of spatial changes, the spatial pattern of ecosystem service value in the Lanzhou-Xining Urban Agglomeration had not undergone obvious transformation. However, the regional variability was significant, generally showing the distribution characteristics of high in the northwest and low in the southeast. ③From the perspective of temporal change, the value of ecosystem services in the Lanzhou-Xining Urban Agglomeration showed an upward trend, with the total flow of value increasing from 186.459 billion yuan to 192.156 billion yuan, with a total value-added of 5.697 billion yuan. ④ There was a rising trend in the overall ecological risk index of the Lanzhou-Xining Urban Agglomeration over the past 20 years. Low ecological risk areas and lower ecological risk areas dominated the ecological risk areas. There was a significant positive correlation between the value of ecosystem services and the ecological risk index. This study aimed to reveal the understanding of the impacts of land-use practices on ecosystem service values and ecological risks, to provide important references for regional ecological risk management and land-use policy formulation, and thus to promote the high-quality development of the ecological environment in the Yellow River Basin.

4.
Pak J Med Sci ; 40(4): 723-729, 2024.
Article in English | MEDLINE | ID: mdl-38544991

ABSTRACT

Objective: To investigate the clinical value of the expression levels of tumor protein D52 (TPD52) and miR-133a on the prognosis assessment of pancreatic cancer surgery. Methods: This was a retrospective study. Ninety-seven patients who underwent radical surgery for pancreatic cancer in Cangzhou Central Hospital from January 2018 to January 2022 were selected and divided into four groups: TPD52 high expression group, TPD52 low expression group, miR-133a high expression group and miR-133a low expression group. The relationship between the expression levels of TPD52 and miR-133a and the clinicopathological features of patients with pancreatic cancer was analyzed. The COX regression model was used to analyze the risk factors affecting the prognosis of patients with pancreatic cancer. Results: The high expression rate of TPD52 and the low expression rate of miR-133a in pancreatic cancer tissues were higher than those in normal paracancerous tissues(P<0.05). Based on the comparison of prognosis and survival, the median survival time of patients with high expression of TPD52 and low expression of miR-133a was lower than that of patients with low expression of TPD52 and high expression of miR-133a, with a statistically significant difference(P<0.05). Moreover, multivariate Cox regression analysis showed that low differentiation of pancreatic cancer, III-IV stage of TNM, high expression of TPD52, as well as low expression of miR-133a were independent risk factors for postoperative survival of patients with pancreatic cancer(P<0.05). Conclusion: TPD52 is expressed at a high level whereas miR-133a at a low level in pancreatic cancer tissues, both of which together with low differentiation of pancreatic cancer and III-IV stage of TNM constitute independent risk factors affecting the surgical prognosis of patients with pancreatic cancer.

5.
Heliyon ; 9(11): e22084, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058614

ABSTRACT

Background: Most N6-methyladenosine (m6A)-associated modulatory proteins are involved in the pathogenesis of various cancers. The roles of m6A-related genes in liver hepatocellular carcinoma (LIHC) and the associated mechanisms remain unknown. Methods: GEO and GEPIA2 databases were used to identify the m6A modification-related genes which were differentially expressed in LIHC and adjacent non-tumor tissues, and quantitative PCR was used to evaluate the expression of KIAA1429, a major m6A methyltransferase, in LIHC cells. The effect of KIAA1429 on the malignant phenotypes of LIHC cells was evaluated in vitro. The UALCAN, GEPIA, and GEO databases and western blotting assays were used to identify the target genes of KIAA1429. Results: KIAA1429 expression was markedly elevated in LIHC tissues, and patients with LIHC who had high KIAA1429 expression had a worse prognosis than those who had low expression. KIAA1429 silencing attenuated LIHC metastasis and proliferation. KIAA142 regulates m6A levels in HPN to intensify LIHC progression. Conclusion: Our study suggests a KIAA1429-HPN modulatory model based on m6A modifications, that offers insights into the occurrence and development of LIHC.

6.
Environ Sci Pollut Res Int ; 30(56): 119285-119296, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923889

ABSTRACT

The global emphasis on achieving sustainable development goals necessitates the involvement of researchers and regulators worldwide. In light of this, recent research has examined the effect of human capital, renewable energy, population growth, economic growth, and environmental protection on the sustainable development goals (SDGs) in a developed economy like Pakistan, which is the most important country in the South Asian Association for Regional Cooperation (SAARC) region. This study analyzed secondary data from 1990 to 2019, using the World Development Indicators as the secondary data source. Using the augmented Dickey-Fuller test to investigate stationarity and the autoregressive distributed lag model to evaluate the nexus between variables, the researchers analyzed the relationship between the variables. The findings indicate that all predictors, such as the human capital index (HCI), renewable energy consumption, and renewable energy, exhibit a negative correlation with carbon emissions and a positive correlation with the SDGs. In this study, sustainability and the HCI are positively correlated. Reducing carbon emissions requires competent and dependable employees. As Pakistan transitions to renewable energy and strives for 30% green electricity by 2030, the report highlights the ecological benefits of controlled population growth. According to the Climate Change Performance Index (CCPI), effective climate policies advance the environmental objectives of a nation. Economic and population growth have a positive correlation with carbon emissions as well. These results facilitate Pakistani policymakers' creation of effective SDG-related initiatives for sustainable development.


Subject(s)
Economic Development , Sustainable Development , Humans , Climate Change , Population Growth , Carbon Dioxide , Renewable Energy , Policy , Carbon
7.
Stress Biol ; 3(1): 28, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37676617

ABSTRACT

DNA damage, which may arise from cellular activities or be induced by genotoxic stresses, can cause genome instability and significantly affect plant growth and productivity. In response to genotoxic stresses, plants activate the cellular DNA damage response (DDR) to sense the stresses and activate downstream processes. The transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a functional counterpart of mammalian p53, is a master regulator of the DDR in plants. It is activated by various types of DNA lesions and can activate the transcription of hundreds of genes to trigger downstream processes, including cell cycle arrest, DNA repair, endoreplication, and apoptosis. Since SOG1 plays a crucial role in DDR, the activity of SOG1 must be tightly regulated. A recent study published in Plant Cell (Chen et al., Plant Cell koad126, 2023) reports a novel mechanism by which the ATR-WEE1 kinase module promotes SOG1 translation to fine-tune replication stress response.

8.
Huan Jing Ke Xue ; 44(9): 4785-4798, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699798

ABSTRACT

Based on 2005-2020 O3 column concentration data of OMI remote sensing satellite, combined with air pollutant data from 10 nationally controlled environmental automatic monitoring stations in the Hexi Corridor and global data assimilation system meteorological data, we used Kriging interpolation, correlation analysis, and backward trajectory (HYSPLIT) models to explore the temporal and spatial distribution characteristics, meteorological factors, transmission paths, and potential sources of O3 in the Hexi Corridor. The results showed the following:① in terms of temporal distribution, O3 column concentration showed an upward trend in 2005-2010 and 2014-2020 and downward trend in 2010-2014; the maximum and minimum values were reached in 2010 and 2014 (332.31 DU and 301.00 DU), respectively, and seasonal changes showed that those in spring and winter were significantly higher than those in summer and autumn. ② In terms of spatial distribution, O3 column concentration showed a latitudinal band distribution characteristic of increasing from southwest to northeast; the high-value areas were primarily distributed in urban areas with low terrain, and the median zone was latitudinally striped with the basic alignment of the Qilian foothills. ③ The analysis of meteorological conditions revealed that temperature, wind speed, and sunshine hours were positively correlated with O3, and relative humidity was negatively correlated with O3. ④ By simulating the airflow transportation trajectory of the receiving point in Wuwei City, it was found that the direction of the O3 conveying path was relatively singular; the dominant airflow in each season was primarily in the west and northwest; and the proportions were 71.62%, 66.85%, 61.22%, and 77.78%, respectively. There were certain seasonal differences in the source areas of O3 potential contribution:the high-value areas of O3 potential sources in spring, summer, and autumn were distributed in Baiyin City and Lanzhou City, which were southeast wind sources, and the high-value areas in winter were distributed between the Badain Jaran Desert and the Tengger Desert, which was the north wind source.

9.
Curr Microbiol ; 80(11): 352, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737960

ABSTRACT

Klebsiella pneumoniae carbapenemase (KPC) is a crucial enzyme that causes carbapenem resistance in Enterobacterales, and infections by these "superbugs" are extremely challenging to treat. Therefore, there is a pressing need for a rapid and accurate KPC detection test to control the prevalence of carbapenem-resistant Enterobacterales (CREs). In this study, we established a novel method for detection of blaKPC, the gene responsible for encoding KPC, based on a recombinase polymerase amplification (RPA) and a CRISPR/Cas13a reaction coupled to fluorophore activation (termed RPA-Cas13a assay). We carefully selected a pair of optimal amplification primers for blaKPC and achieved a lower limit of detection of approximately 2.5 copies/µL by repeatedly amplifying a recombinant plasmid containing blaKPC. The RPA-Cas13a assay demonstrated a sensitivity of 96.5% and specificity of 100% when tested on 57 blaKPC-positive CRE strains, which were confirmed by DNA sequencing. Moreover, in 311 sputum samples, the theoretical antibiotic resistance characteristics of blaKPC-positive strains obtained by the RPA-Cas13a assay were highly consistent with the results of antibiotic susceptibility test (Kappa = 0.978 > 0.81, P < 0.01). In conclusion, the RPA-Cas13a system is a simple and one-hour efficient technology for the detection of a potentially fatal antibiotic resistance gene.


Subject(s)
Gammaproteobacteria , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Carbapenems/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins/genetics
10.
Micromachines (Basel) ; 14(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630155

ABSTRACT

In this work, we proposed a chamber-based digital PCR (cdPCR) microfluidic device that is compatible with fluorescence imaging systems for milk adulteration detection. The device enables the digitalization of PCR reagents, which are loaded into microchambers, and subsequent thermocycling for DNA amplification. Then, fluorescence images of the microchambers are captured and analyzed to obtain the total number of positive chambers, which is used to calculate the copy numbers of the target DNA, enabling accurate quantitative detections to determine intentional milk adulteration from accidental contaminations. The validation of this device is performed by camel milk authentication. We performed 25,600-chamber virtual multiplexing cdPCR tests using 40 × 40 chamber devices for the detection of DNA templates extracted from pure or mixed milk with different dilutions. Then, the cdPCR chip was used to authenticate blind milk samples, demonstrating its efficacy in real biotechnical applications.

11.
Sci Rep ; 13(1): 9440, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296194

ABSTRACT

Severe acute pancreatitis (SAP) presents with an aggressive clinical presentation and high lethality rate. Early prediction of the severity of acute pancreatitis will help physicians to further precise treatment and improve intervention. This study aims to construct a composite model that can predict SAP using inflammatory markers. 212 patients with acute pancreatitis enrolled from January 2018 to June 2020 were included in this study, basic parameters at admission and 24 h after hospitalization, and laboratory results such as inflammatory markers were collected. Pearson's test was used to analyze the correlation between heparin-binding protein (HBP), procalcitonin (PCT), and C-reactive protein (CRP). Risk factors affecting SAP were analyzed using multivariate logistic regression, inflammatory marker models were constructed, and subject operating curves were used to verify the discrimination of individual as well as inflammatory marker models and to find the optimal cut-off value based on the maximum Youden index. In the SAP group, the plasma levels of HBP, CRP, and PCT were 139.1 ± 74.8 ng/mL, 190.7 ± 106.3 mg/L and 46.3 ± 22.3 ng/mL, and 25.3 ± 16.0 ng/mL, 145.4 ± 67.9 mg/L and 27.9 ± 22.4 ng/mL in non-SAP patients, with a statistically significant difference between the two groups (P < 0.001), The Pearson correlation analysis showed a positive correlation between the three values of HBP, CRP, and PCT. The results of the multivariate logistic regression analysis showed that HBP (OR = 1.070 [1.044-1.098], P < 0.001), CRP (OR = 1.010 [1.004-1.016], P = 0.001), and PCT (OR = 1.030[1.007-1.053], P < 0.001) were risk factors for SAP, and the area under the curve of the HBP-CRP-PCT model was 0.963 (0.936-0.990). The HCP model, consisting of HBP, CRP, and PCT; is well differentiated and easy to use and can predict the risk of SAP in advance.


Subject(s)
Pancreatitis , Procalcitonin , Humans , C-Reactive Protein/analysis , Pancreatitis/diagnosis , Acute Disease , Biomarkers , Prognosis
12.
J Nutr Biochem ; 117: 109355, 2023 07.
Article in English | MEDLINE | ID: mdl-37085057

ABSTRACT

Strong evidence from observational studies shows that having body fatness is associated with an individual's risk of developing colorectal cancer (CRC), but the causality between obesity and CRC remains inadequately elucidated. Our previous studies have shown diet-induced obesity is associated with elevated TNF-α and enhanced activation of Wnt-signaling, yet the causal role of TNF-α on intestinal tumorigenesis has not been precisely studied. The present study aims to examine the functionality of TNF-α in the development of CRC associated with obesity. We first examined the extent to which diet-induced obesity elevates intestinal tumorigenesis by comparing Apc1638N mice fed a low fat diet (LFD, 10 kcal% fat) with those fed a high fat diet (HFD, 60 kcal% fat), and then investigated the degree that the genetic ablation of TNF-α attenuates the effect by crossing the TNF-α-/- mice with Apc1638N mice and feeding them with the same HFD (TNF-α KO HFD). After 16-weeks of feeding, the HFD significantly increased intestinal tumorigenesis, whereas the deletion of TNF-α attenuated the effect (P < .05). Accompanying the changes in macroscopic tumorigenesis, HFD significantly elevated intestinal inflammation and procarcinogenic Wnt-signaling, whereas abolishment of TNF-α mitigated the magnitude of these elevations (P < .05). In summary, our findings demonstrate that the knockout of TNF-α attenuates obesity-associated intestinal tumorigenesis by decreasing intestinal inflammation and thereby the Wnt-signaling, indicating that TNF-α signaling is a potential target that can be utilized to reduce the risk of CRC associated with obesity.


Subject(s)
Obesity , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/genetics , Obesity/genetics , Carcinogenesis , Diet, High-Fat/adverse effects , Cell Transformation, Neoplastic , Wnt Signaling Pathway , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese
13.
Plant Cell ; 35(6): 2316-2331, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36856605

ABSTRACT

Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hominidae , Animals , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Repair/genetics , DNA Damage/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Endonucleases/genetics , Hominidae/metabolism , Arabidopsis Proteins/genetics
14.
Membranes (Basel) ; 13(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36837669

ABSTRACT

CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with different quaternization degrees are prepared for application in ECR. Among all QAPBI membranes, the QAPBI-2 membrane exhibits optimized physico-chemical properties. In addition, the QAPBI-2 membrane shows higher a Faraday efficiency and CO partial current density compared with commercial Nafion 117 and FAA-3-PK-130 membranes, at -1.5 V (vs. RHE) in an H-type cell. Additionally, the QAPBI-2 membrane also has a higher Faraday efficiency and CO partial current density compared with Nafion 117 and FAA-3-PK-130 membranes, at -3.0 V in a membrane electrode assembly reactor. It is worth noting that the QAPBI-2 membrane also has excellent ECR stability, over 320 h in an H-type cell. This work illustrates a promising pathway to obtaining cost-effective membranes through a molecular structure regulation strategy for ECR application.

15.
Micromachines (Basel) ; 14(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36838107

ABSTRACT

Cell viability is an essential physiological status for drug screening. While cell staining is a conventional cell viability analysis method, dye staining is usually cytotoxic. Alternatively, impedance cytometry provides a straightforward and label-free sensing approach for the assessment of cell viability. A key element of impedance cytometry is its sensing electrodes. Most state-of-the-art electrodes are made of expensive metals, microfabricated by lithography, with a typical size of ten microns. In this work, we proposed a low-cost microfluidic impedance cytometry device with 100-micron wide indium tin oxide (ITO) electrodes to achieve a comparable performance to the 10-micron wide Au electrodes. The effectiveness was experimentally verified as 7 µm beads can be distinguished from 10 µm beads. To the best of our knowledge, this is the lowest geometry ratio of the target to the sensing unit in the impedance cytometry technology. Furthermore, a cell viability test was performed on MCF-7 cells. The proposed double differential impedance cytometry device has successfully differentiated the living and dead MCF-7 cells with a throughput of ~1000 cells/s. The label-free and low-cost, high-throughput impedance cytometry could benefit drug screening, fundamental biological research and other biomedical applications.

16.
Physiol Genomics ; 55(3): 101-112, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36645669

ABSTRACT

Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer, though mechanisms underlying these effects are incompletely understood. Human organoids are an ideal system to study genomic and epigenomic host-environment interactions. We use human colonic organoids to profile ASA responses on genome-wide gene expression and chromatin accessibility. Human colonic organoids from one individual were cultured and treated in triplicate with 3 mM ASA or vehicle control (DMSO) for 24 h. Gene expression and chromatin accessibility were measured using RNA- and ATAC-sequencing, respectively. Differentially expressed genes were analyzed using DESeq2. Top genes were validated by qPCR. Gene set enrichment was performed by SetRank. Differentially accessible peaks were analyzed using DiffBind and edgeR. Peak annotation and differential transcription factor motifs were determined by HOMER and diffTF. The results showed robust transcriptional responses to ASA with significant enrichment for fatty acid oxidation and peroxisome proliferator-activated receptor (PPAR) signaling that were validated in independent organoid lines. A large number of differentially accessible chromatin regions were found in response to ASA with significant enrichment for Fos, Jun, and Hnf transcription factor motifs. Integrated analysis of epigenomic and genomic treatment responses highlighted gene regions that could mediate ASA's specific effects in the colon including those involved in chemoprotection and/or toxicity. Assessment of chromatin accessibility and transcriptional responses to ASA yielded new observations about genome-wide effects in the colon facilitated by application of human colonic organoids. This framework can be applied to study colonic ASA responses between individuals and populations in future studies.


Subject(s)
Aspirin , Epigenomics , Humans , Aspirin/metabolism , Colon/metabolism , Chromatin/metabolism , Transcription Factors/metabolism , Organoids
17.
ISA Trans ; 136: 525-534, 2023 May.
Article in English | MEDLINE | ID: mdl-36376107

ABSTRACT

In this study, a double-loop tracking control strategy is investigated to realize trajectory tracking control for a wheeled mobile robot (WMR) with unmodeled dynamics. More specifically, two nonlinear ESOs are designed to estimate disturbances from external disturbances and unmodeled dynamics. Combining with integral sliding mode control and backstepping control, a double-loop tracking controller is designed to enhance tracking accuracy for the WMR along the right angle roads. Based on Lyapunov methods, convergence analysis is given for both the nonlinear ESOs and the double-loop tracking controller. Validity of the double-loop tracking control strategy is demonstrated by experimental results on the WMR along a right angle road.

18.
Environ Sci Pollut Res Int ; 30(9): 23422-23436, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36322350

ABSTRACT

To achieve China's "double carbon" goal, it is necessary to make quantitative evaluation of the power grid enterprises' contribution to carbon emission reduction. This paper analyzes the contribution of power grid enterprises to carbon emission reduction from three points: power generation side, power grid side, and user side. Then, PLS-VIP method is used to screen the key influencing factors of carbon emission reduction contribution of power grid enterprises from three aspects: consumption of clean energy emission reduction, reduction of line loss emission reduction, and substitution of electric energy. Based on GA-ELM combined machine learning algorithm, we establish an intelligent evaluation model of power grid enterprises' carbon emission reduction contribution. Furthermore, according to the distribution law of key influencing factors, this paper uses Monte Carlo simulation method to calculate the contribution of power grid enterprises to carbon emission reduction by scenario, so as to evaluate the contribution of power grid enterprises to carbon emission reduction. Finally, combined with the relevant data of power grid enterprises from 2003 to 2019, this paper makes an empirical study on the completion of carbon emission reduction contribution and the promotion path.


Subject(s)
Air Pollution , Carbon , Electricity , Carbon/analysis , China , Industry , Air Pollution/prevention & control
19.
Front Plant Sci ; 13: 910938, 2022.
Article in English | MEDLINE | ID: mdl-35755695

ABSTRACT

Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.

20.
Huan Jing Ke Xue ; 43(2): 1004-1014, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075874

ABSTRACT

Clarifying the absorption dynamics of heavy metal(loid)s by crops under different cultivation methods is critical for risk management and control for heavy metal pollution. Here, taking carrots as an example, the pH, cation exchange capacity (CEC), and contents of heavy metals in soil and carrots were analyzed. We compared the absorption and transport characteristics of six metal(loid)s (As, Cd, Cr, Cu, Pb, and Zn) during the three key growth periods under greenhouse and open-field cultivation methods. In addition, the effects of planting methods on carrot biomass and heavy metal content over time were studied, and a health risk assessment was conducted. The results showed that the greenhouse and open-field cultivation methods had the following in common:① As the carrots continuously grew, the metal uptake and biomass in the belowground part (edible part) and the metal(loid) concentrations in the aboveground and belowground parts both showed trends of increasing first and then decreasing or stabilizing. ② The absorption of As, Cd, Cr, and Pb in carrots was mostly accumulated in the aboveground part. ③ The content of Cd in the edible part exceeded the standard, and the total target hazard quotient was>1, indicating potential adverse health risks, most of which were contributed by As and Cd. Compared to that under open-field, the short-term greenhouse cultivation had a harvest time approximately 15 d earlier. The As, Cd, and Pb concentrations in the aboveground part during the seedling and fast-growing periods were significantly lower in the greenhouse than that in the open-field (P<0.05) but did not differ between greenhouse and open-field (except As) at the mature stage. The concentrations of As and Cd in the belowground part of greenhouse carrots were lower in the greenhouse than those of carrots grown in the open-field at the seedling stage (P<0.05). The absorption of As and Cd was decreased significantly from 0 to 95 d (P<0.05), and there was no significant difference in the metal concentration and absorption in the rest of the growth stages. The bioconcentration factors (BCF) of As, Cd, and Pb in the aboveground part in all stages and those of As and Cd in the belowground part in the seedling stage were lower in the greenhouse than that in the open-field. This study emphasizes the possibility of short-term changes in cultivation mode to reduce the risks of metal(loid)s in contaminated farmland vegetables.


Subject(s)
Daucus carota , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...