Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38836332

ABSTRACT

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Subject(s)
Mice, Inbred C57BL , NF-kappa B , Nanotubes, Carbon , Pentacyclic Triterpenes , Pneumonia , Signal Transduction , Triterpenes , Animals , Pentacyclic Triterpenes/pharmacology , Nanotubes, Carbon/toxicity , Signal Transduction/drug effects , Triterpenes/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/prevention & control , Pneumonia/metabolism , NF-kappa B/metabolism , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Mice , Mice, Knockout , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry
2.
Ecotoxicol Environ Saf ; 280: 116552, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850694

ABSTRACT

In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.

3.
Comput Biol Chem ; 111: 108098, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38820799

ABSTRACT

Cell-penetrating peptides have attracted much attention for their ability to break through cell membrane barriers, which can improve drug bioavailability, reduce side effects, and promote the development of gene therapy. Traditional wet-lab prediction methods are time-consuming and costly, and computational methods provide a short-time and low-cost alternative. Still, the accuracy and reliability need to be further improved. To solve this problem, this study proposes a feature fusion-based prediction model, where the protein pre-trained language models ProtBERT and ESM-2 are used as feature extractors, and the extracted features from both are fused to obtain a more comprehensive and effective feature representation, which is then predicted by linear mapping. Validated by many experiments on public datasets, the method has an AUC value as high as 0.983 and shows high accuracy and reliability in cell-penetrating peptide prediction.

4.
Plants (Basel) ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794480

ABSTRACT

Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize, this study utilized the susceptible temperate inbred line Ye107 as the male parent crossed with three resistant tropical maize inbred lines (CML312, D39, and Y32) to generate 627 F7 recombinant inbred lines (RILs), with the aim of identifying maize disease-resistant loci and candidate genes for common rust. Phenotypic data showed good segregation between resistance and susceptibility, with varying degrees of resistance observed across different subpopulations. Significant genotype effects and genotype × environment interactions were observed, with heritability ranging from 85.7% to 92.2%. Linkage and genome-wide association analyses across the three environments identified 20 QTLs and 62 significant SNPs. Among these, seven major QTLs explained 66% of the phenotypic variance. Comparison with six SNPs repeatedly identified across different environments revealed overlap between qRUST3-3 and Snp-203,116,453, and Snp-204,202,469. Haplotype analysis indicated two different haplotypes for CR resistance for both the SNPs. Based on LD decay plots, three co-located candidate genes, Zm00001d043536, Zm00001d043566, and Zm00001d043569, were identified within 20 kb upstream and downstream of these two SNPs. Zm00001d043536 regulates hormone regulation, Zm00001d043566 controls stomatal opening and closure, related to trichome, and Zm00001d043569 is associated with plant disease immune responses. Additionally, we performed candidate gene screening for five additional SNPs that were repeatedly detected across different environments, resulting in the identification of five candidate genes. These findings contribute to the development of genetic resources for common rust resistance in maize breeding programs.

5.
Anim Nutr ; 17: 155-164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774024

ABSTRACT

Fructo-oligosaccharides (FOS) are well-known prebiotics that have the potential to improve sow reproductive performance and increase piglet growth. However, previous studies were observed in sole FOS-supplemented diets of sows or weaned piglets and did not consider the sow-to-piglet transfer effect on the performance and diarrhea rate of weaned piglets. This study explores the effects of dietary FOS supplementation on the reproductive performance of sows, and the effects of FOS supplementation at different stages on the growth performance and diarrhea rate of weaned piglets. A split-plot experimental design was used with sow diet effect in the whole plot and differing piglet diet effect in the subplot. Fifty-two multiparous sows (223.24 ± 14.77 kg) were randomly divided into 2 groups (0 or 0.2% FOS). The experiment lasted from day 85 of gestation to day 21 of lactation. Reproductive performance, glucose tolerance, placental angiogenesis, and intestinal flora of sows were assessed. At weaning, 192 weaned piglets were grouped in 2 × 2 factorial designs, with the main effects of FOS supplemental level of sow diet (0 and 0.2%), and FOS supplemental level of weaned piglet diet (0 and 0.2%), respectively. The growth performance and diarrhea rate of the weaned piglets were analyzed during a 28-d experiment. Maternal dietary supplementation of FOS was shown to reduce the stillbirth and invalid piglet rates (P < 0.05), improve the insulin sensitivity (P < 0.05) and fecal scores (P < 0.05) of sows, increase the abundance of Akkermansia muciniphila (P = 0.016), decrease the abundance of Escherichia coli (P = 0.035), and increase the isovalerate content in feces (P = 0.086). Meanwhile, the placental angiogenesis marker CD31 expression was increased in sows fed FOS diet (P < 0.05). Moreover, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets (P < 0.05) and increased the content of short-chain fatty acids in feces (P < 0.05). Furthermore, only post-weaning dietary FOS supplementation could improve nutrient digestibility of weaned piglets (P < 0.05). Collectively, FOS supplementation in sows can reduce stillbirth rate, perinatal constipation, and insulin resistance, as well as improve placental vascularization barrier. Additionally, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets, but only FOS supplementation in piglets alone at weaning stage could improve their nutrient digestibility.

6.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791369

ABSTRACT

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Subject(s)
Apoptosis , Bacterial Proteins , Bacterial Toxins , Interleukin-8 , Pasteurella multocida , Interleukin-8/metabolism , Interleukin-8/genetics , Animals , Pasteurella multocida/genetics , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Apoptosis/genetics , Swine , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Caspase 8/metabolism , Caspase 8/genetics , Gene Knockout Techniques , CRISPR-Cas Systems
7.
Curr Probl Cardiol ; 49(7): 102614, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692447

ABSTRACT

Pulmonary hypertension (PH) with high pulmonary vascular resistance (PVR) is a very often diagnosed contraindication for orthotopic heart transplantation (OHT). It is a direct consequence of left ventricle failure characterized by high diastolic pressure obstructing the collection of blood from the pulmonary vessels. The occurrence of this situation grows with the increasing time of waiting for OHT, and with the progression of heart failure. Mechanical circulatory support (MCS) devices, particularly left ventricular assist devices (LVADs), have emerged as pivotal interventions for patients with fixed PH, offering a potential bridge to transplantation. The pathophysiological impact of PH in heart transplant candidates is profound, as it is associated with increased perioperative risk and heightened mortality post-transplantation. The selection of heart transplant candidates thus mandates a careful evaluation of PH, with an emphasis on distinguishing between reversible and fixed forms of the condition. Reversible PH can often be managed with medical therapies; however, fixed PH presents a more daunting challenge, necessitating more aggressive interventions like MCS. Patients are supported with LVADs until evidence of pulmonary afterload reversal is evident and then can be considered for heart transplantation. However, in those who are non-responders or have complications while being supported, their option for transplant is revoked. Despite these advancements, the heterogeneity of MCS devices and their mechanisms of action necessitates a nuanced understanding of their efficacy.


Subject(s)
Heart Failure , Heart Transplantation , Heart-Assist Devices , Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Heart Failure/therapy , Heart Failure/physiopathology , Treatment Outcome , Vascular Resistance/physiology
8.
Curr Probl Cardiol ; 49(7): 102629, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723797

ABSTRACT

Transcatheter aortic valve implantation (TAVI) is a promising treatment strategy for high-risk surgical patients, and trials investigating its effectiveness in intermediate- and lower-risk patients are underway. Data are inconsistent regarding the superiority of using local anesthesia with conscious sedation alone versus general anesthesia (GA) as the anesthesia management of choice for elderly frail patients. Historically, TAVI procedure is performed under GA with transesophageal echocardiography. This approach gives operators stable hemodynamic control of the patient and helps decrease the risk of many of the operation's documented complications, including paravalvular leak and valve malpositioning. However, some studies have criticized the dependence of GA on mechanical ventilation and an increased need for catecholamine and/or vasopressor agents. Alternatively, to further capitalize on the minimally invasive nature of TAVI, some authors have advocated for the use of local anesthesia (LA) and/or conscious sedation approach, which would decrease procedure time, length of hospital stay, and minimize the need for postoperative inotropes. Ultimately and at present, the choice of anesthesia is based on the personal experience and preference of the Heart Team involved in the TAVI procedure, which will dictate the best possible management plan for each patient. Many patients currently undergoing TAVI are elderly and have multiple comorbidities, making their care complex. Anesthetic care is shifting from GA to sedation and regional block, but life-threatening complications are still relatively common and safety during planning and conduct of these procedures by the heart team, with the anesthesiologist at the center, is paramount.


Subject(s)
Anesthesia, General , Anesthesia, Local , Aortic Valve Stenosis , Randomized Controlled Trials as Topic , Transcatheter Aortic Valve Replacement , Humans , Anesthesia, General/methods , Anesthesia, Local/methods , Aortic Valve Stenosis/surgery , Propensity Score , Transcatheter Aortic Valve Replacement/methods
9.
Adv Sci (Weinh) ; : e2401586, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666496

ABSTRACT

The continued miniaturization of chips demands highly thermally conductive materials and effective thermal management strategies. Particularly, the high-field transport of the devices built with 2D materials is limited by self-heating. Here a systematic control of heat flow in single-side fluorinated graphene (FG) with varying degrees of fluorination is reported, revealing a superior room-temperature thermal conductivity as high as 128 W m-1 K-1. Monolayer graphene/FG lateral heterostructures with seamless junctions are approached for device fabrication. Efficient in-plane heat removal paths from graphene channel to side FG are created, contributing significant reduction of the channel peak temperature and improvement in the current-carrying capability and power density. Molecular dynamics simulations indicate that the interfacial thermal conductance of the heterostructure is facilitated by the high degree of overlap in the phonon vibrational spectra. The findings offer novel design insights for efficient heat dissipation in micro- and nanoelectronic devices.

10.
Phytomedicine ; 129: 155534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583346

ABSTRACT

BACKGROUND: Severe respiratory system illness caused by influenza A virus infection is associated with excessive inflammation and abnormal apoptosis in alveolar epithelial cells (AEC). However, there are limited therapeutic options for influenza-associated lung inflammation and apoptosis. Pterostilbene (PTE, trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol that has been reported to limit influenza A virus infection by promoting antiviral innate immunity, but has not been studied for its protective effects on virus-associated inflammation and injury in AEC. PURPOSE: Our study aimed to investigate the protective effects and underlying mechanisms of PTE in modulating inflammation and apoptosis in AEC, as well as its effects on macrophage polarization during influenza virus infection. STUDY DESIGN AND METHODS: A murine model of influenza A virus-mediated acute lung injury was established by intranasal inoculation with 5LD50 of mouse-adapted H1N1 viruses. Hematoxylin and eosin staining, immunofluorescence, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, Luminex and flow cytometry were performed. RESULTS: PTE effectively mitigated lung histopathological changes and injury induced by H1N1 viruses in vivo. These beneficial effects of PTE were attributed to the suppression of inflammation and apoptosis in AEC, as well as the modulation of M1 macrophage polarization. Mechanistic investigations revealed that PTE activated the phosphorylated AMP-activated protein kinase alpha (P-AMPKα)/sirtui1 (Sirt1)/PPARγ coactivator 1-alpha (PGC1α) signal axis, leading to the inhibition of nuclear factor kappa-B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling induced by H1N1 viruses, thereby attenuating inflammation and apoptosis in AEC. PTE also forced activation of the P-AMPKα/Sirt1/PGC1α signal axis in RAW264.7 cells, counteracting the activation of phosphorylated signal transducer and activator of transcription 1 (P-STAT1) induced by H1N1 viruses and the augment of P-STAT1 activation in RAW264.7 cells with interferon-gamma (IFN-γ) pretreatment before viral infection, thereby reducing H1N1 virus-mediated M1 macrophage polarization as well as the enhancement of macrophages into M1 phenotypes elicited by IFN-γ pretreatment. Additionally, the promotion of the transition of macrophages towards the M2 phenotype by PTE was also related to activation of the P-AMPKα/Sirt1/PGC1α signal axis. Moreover, co-culturing non-infected AEC with H1N1 virus-infected RAW264.7 cells in the presence of PTE inhibited apoptosis and tight junction disruption, which was attributed to the suppression of pro-inflammatory mediators and pro-apoptotic factors in an AMPKα-dependent manner. CONCLUSION: In conclusion, our findings suggest that PTE may serve as a promising novel therapeutic option for treating influenza-associated lung injury. Its ability to suppress inflammation and apoptosis in AEC, modulate macrophage polarization, and preserve alveolar epithelial cell integrity highlights its potential as a therapeutic agent in influenza diseases.


Subject(s)
Acute Lung Injury , Apoptosis , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Sirtuin 1 , Stilbenes , Animals , Stilbenes/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/virology , Mice , Influenza A Virus, H1N1 Subtype/drug effects , Apoptosis/drug effects , Sirtuin 1/metabolism , Orthomyxoviridae Infections/drug therapy , RAW 264.7 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Macrophages/drug effects , Disease Models, Animal , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Lung/drug effects , Lung/virology , Lung/pathology , Female
11.
Sensors (Basel) ; 24(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38610343

ABSTRACT

In satellite remote sensing (SRS), there is a demand for large-power microwave components. A Butler matrix is essential to a transmitting antenna array in SRS. This article illustrates the electrical and mechanical design, simulation, and test results of a large-power planar beamforming network for SRS at C-band. It is a 4 × 4 Butler matrix based on square coaxial lines. Short-ended stubs are used in the Butler matrix to broaden its bandwidth by 10%, support inner conductors, and enhance heat transfer in vacuum environments. The simulation results are consistent with the measured results. The reflection coefficient is less than -18 dB, and the isolation is more than 23 dB from 3.8 GHz to 4.2 GHz. The insertion losses are less than 0.6 dB, and the phase errors are better than ±6°. The measured peak microwave power of the proposed Butler matrix is 9 kW. Its size is 440 × 400 × 40 mm3. The proposed Butler matrix beamforming network can be applied to SRS systems.

12.
Heliyon ; 10(7): e28046, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560130

ABSTRACT

Hereditary hemochromatosis (HH) is a disease characterized by disordered iron metabolism. It often involves mutations of the HFE gene, which encodes the homeostatic iron regulator protein (HFE), as well as mutations affecting hepcidin antimicrobial peptide, hemojuvelin, or transferrin receptor 2. Historically, HH has been observed primarily in European and European diaspora populations, while classical HH is rare in Asian populations, including in China. In this article, we report a rare case of HH in a Chinese man that could be attributed to a heterozygous C282Y/H63D HFE mutation. Based on clinical examination, liver biopsy, and genetic testing results, the patient was diagnosed with HH. Clinical signs and symptoms and serum iron-related test results were recorded for a period of two years after the patient began treatment. Over this observation period, the patient was subjected to 25 phlebotomies (accounting for a total blood loss of 10.2 L). His serum ferritin levels decreased from 1550 µg/L to 454 µg/L, his serum iron concentration decreased from 40 µmol/L to 24.6 µmol/L, and his transferrin saturation decreased from 97.5% to 55.1%. Early diagnosis is essential for patients with HH to obtain good outcomes. Regular phlebotomy after diagnosis can improve HH symptoms and delay HH disease progression.

13.
J Child Orthop ; 18(2): 236-245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567041

ABSTRACT

Background: Ewing sarcoma remains the second most prevalent primary aggressive bone tumor in teens and young adults. The aim of our study was to develop and validate a web-based nomogram to predict the overall survival for Ewing sarcoma in children. Methods: A total of 698 patients, with 640 cases from the Surveillance, Epidemiology, and End Results (the training set) and 58 cases (the external validation set), were included in this study. Cox analyses were carried out to determine the independent prognostic indicators, which were further included to establish a web-based nomogram. The predictive abilities were tested through the concordance index, calibration curve, decision curve analysis, and area under the receiver operating characteristic curve. Results: As suggested by univariate and multivariate Cox analyses, age, primary site, tumor size, metastasis stage (M stage), and chemotherapy were included as the independent predictive variables. The area under the receiver operating characteristic curve values, calibration curves, concordance index, and decision curve analysis from training and validation groups suggested the model has great clinical applications. Conclusion: We developed a convenient and precise web-based nomogram to evaluate overall survival for Ewing sarcoma in children. The application of this nomogram would assist physicians and patients in making decisions.

15.
Sci Total Environ ; 925: 171812, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508267

ABSTRACT

Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.


Subject(s)
Agricultural Inoculants , Microalgae , Salvia miltiorrhiza , Rhizosphere , Antioxidants/metabolism , Salvia miltiorrhiza/metabolism , Charcoal/metabolism , Soil , Copper/toxicity , Copper/metabolism
16.
BMC Geriatr ; 24(1): 242, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459429

ABSTRACT

BACKGROUND: In light of the aging population, increasingly suffering from the metabolic syndrome (MS), strategies need to be developed to address global public health challenges known to be associated with MS such as arthritis. As physical activity (PA) may play a crucial role in tackling those challenges, this study aimed to determine the association between the number of MS risk factors, PA and arthritis in people ≥ 50 years old. METHODS: Data from the Survey of Health, Ageing, and Retirement in Europe (SHARE) were used to estimate the prevalence of arthritis and MS risk factors in the European population ≥ 50 years and to evaluate the associations between MS risk factors, PA and arthritis. Binary logistic regression was performed to calculate the odds ratio of different factors. RESULTS: 73,125 participants were included in the analysis. 55.75% of patients stated at least one of the three MS risk factors. The prevalence of rheumatoid arthritis (RA) and osteoarthritis (OA)/other rheumatism among ≥ 50 years population was 10.19% and 19.32% respectively. Females showed a higher prevalence of arthritis than males. Prevalence did not differ between groups with different levels of PA. Arthritis prevalence was positively correlated with the number of MS risk factors (P < 0.01) but not with PA (P > 0.05). CONCLUSION: Middle-aged and older Europeans with multiple comorbidities suffered from RA, OA or other rheumatism more frequently than participants with fewer comorbidities, while the level of physical activity was not associated with the number of metabolic risk factors in patients with RA and OA/other rheumatism.


Subject(s)
Arthritis, Rheumatoid , Metabolic Syndrome , Osteoarthritis , Male , Female , Humans , Middle Aged , Aged , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Cross-Sectional Studies , Prevalence , Risk Factors , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , Exercise
17.
Mol Med Rep ; 29(5)2024 05.
Article in English | MEDLINE | ID: mdl-38551163

ABSTRACT

Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1­KO) is thought to be protective against HS based on a genome­wide CRISPR­Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1­KO against HS in human umbilical vein endothelial cells. DNAJA1­KO cells were infected using a lentivirus to investigate the role of DNAJA1­KO in HS­induced endothelial barrier disruption. It was shown that DNAJA1­KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit­8 and lactate dehydrogenase assays. Moreover, HS­induced endothelial cell apoptosis was inhibited by DNAJA1­KO, as indicated by Annexin V­FITC/PI staining and cleaved­caspase­3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC­Dextran, was sustained during HS. DNAJA1­KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1­KO could effectively protect the HS­induced decrease in the expression and distribution of cell junction proteins, including zonula occludens­1, claudin­5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS­induced wild­type cells and inhibited by DNAJA1­KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular­barrier regulation. Furthermore, the 'myosin light­chain kinase (MLCK)­MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1­KO, as expected. Moreover, DNAJA1­KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1­KO alleviates HS­induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK­MLC signaling pathway.


Subject(s)
HSP40 Heat-Shock Proteins , Heat Stroke , Animals , Humans , Mice , Heat Stroke/genetics , Heat Stroke/metabolism , HSP40 Heat-Shock Proteins/genetics , Human Umbilical Vein Endothelial Cells , Mice, Knockout , Proteomics , Signal Transduction
18.
Curr Probl Cardiol ; 49(5): 102528, 2024 May.
Article in English | MEDLINE | ID: mdl-38492615

ABSTRACT

Frailty is prevalent in elderly cardiac patients and may be a critical predictor of post-operative neurocognitive disorders (PND). The aim of this review was to demonstrate the correlation of frailty with PND in postsurgical elder patients. A review of published literature and bibliometric analysis was undertaken. Electronic databases from 2009 to 2022 were searched to identify articles that evaluated the relationship between frailty and PND in aging populations. Demographic data, type of surgery performed, frailty measurement, and impact of frailty on PND were extracted from the selected studies. The quality of the studies and risk of bias were assessed by the Newcastle-Ottawa Quality Assessment Scale, and the included articles were assessed as medium to high quality. Eighty-one studies were selected for the Bibliometric review in terms of research trends and hotpots. Additionally, 35 observational studies (prospective and retrospective cohorts) were selected for this review. The mean age ranged from 63 to 84 years and included patients undergoing cardiac, orthopedic, and other surgeries who had cardiac symptoms. Regardless of how frailty was measured, the strongest evidence in terms of numbers of studies, consistency of results, and study quality was for associations between frailty and PND. This analysis found a steadily growing focus on frailty and PND research in cardiac and other patients. The observational studies account for the majority of this area, and frailty occurred in the older cardiac patients over 60 years of age, and pre-screening of frailty can be predictive of PND and mortality.


Subject(s)
Frailty , Aged , Aged, 80 and over , Humans , Middle Aged , Frail Elderly , Frailty/epidemiology , Frailty/complications , Frailty/diagnosis , Neurocognitive Disorders/complications , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prospective Studies , Retrospective Studies , Risk Factors , Observational Studies as Topic
19.
Food Res Int ; 182: 114188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519193

ABSTRACT

Gelsemium elegans (GE) is a widely distributed hypertoxic plant that has caused many food poisoning incidents. Its pollen can also be collected by bees to produce toxic honey, posing a great threat to the health and safety of consumers. However, for the complex matrices such as cooked food and honey, it is challenging to perform composition analysis. It is necessary to establish more effective strategies for investigating GE contamination. In this study, the real-time PCR (qPCR) analysis combined with DNA barcode matK was proposed for the identification and detection of GE. Fifteen honey samples along with twenty-eight individuals of GE and the common confusable objects Lonicera japonica, Ficus hirta, Stellera chamaejasme and Chelidonium majus were gathered. Additionally, the food mixtures treated with 20-min boiling and 30-min digestion were prepared. Specific primers were designed, and the detection capability and sensitivity of qPCR in honey and boiled and digested food matrices were tested. The results demonstrated that the matK sequence with sufficient mutation sites was an effective molecular marker for species differentiation. GE and the confusable species could be clearly classified by the fluorescence signal of qPCR assay with a high sensitivity of 0.001 ng/µl. In addition, this method was successfully employed for the detection of deeply processed food materials and honey containing GE plants which even accounted for only 0.1 %. The sequencing-free qPCR approach undoubtedly can serve as a robust support for the quality supervision of honey industry and the prevention and diagnosis of food poisoning.


Subject(s)
Foodborne Diseases , Gelsemium , Honey , Bees , Animals , Honey/analysis , Real-Time Polymerase Chain Reaction , Food, Processed , Plants
20.
Open Med (Wars) ; 19(1): 20240898, 2024.
Article in English | MEDLINE | ID: mdl-38463518

ABSTRACT

Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...