Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
Cyborg Bionic Syst ; 5: 0101, 2024.
Article in English | MEDLINE | ID: mdl-38778878

ABSTRACT

In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.

2.
Front Pharmacol ; 15: 1362301, 2024.
Article in English | MEDLINE | ID: mdl-38746012

ABSTRACT

Background and Objective: Oxidative stress is an important pathological process in ischemic stroke (IS). Apigenin (APG) is a natural product with favorable antioxidative effects, and some studies have already demonstrated the antioxidative mechanism of APG in the treatment of IS. However, the mechanism of APG on DNA damage and repair after IS is not clear. The aim of this study was to investigate the mechanism of APG on DNA repair after IS. Methods: Male Sprague-Dawley rats were used to establish a model of permanent middle cerebral artery occlusion (pMCAO) on one side, and were pre-treated with gavage of APG (30, 60, or 120 mg/kg) for 7 days. One day after pMCAO, the brain tissues were collected. Cerebral infarct volume, brain water content, HE staining and antioxidant index were analyzed to evaluated the brain damage. Molecular Docking, molecular dynamics (MD) simulation, immunohistochemistry, and Western blot were used to explore the potential proteins related to DNA damage repair. Results: APG has a low binding score with DNA repair-related proteins. APG treatment has improved the volume of cerebral infarction and neurological deficits, reduced brain edema, and decreased parthanatos and apoptosis by inhibiting PARP1/AIF pathway. In addition, APG improved the antioxidative capacity through reducing reactive oxygen species and malondialdehyde, and increasing glutathione and superoxide dismutase. Also, APG has reduced DNA damage- and cell death-related proteins such as PARP1, γH2A.X, 53BP1, AIF, cleaved caspase3, Cytochrome c, and increased DNA repair by BRCA1 and RAD51 through homologous recombination repair, and reduced non-homologous end link repair by KU70. Conclusion: APG can improve nerve damage after IS, and these protective effects were realized by reducing oxidative stress and DNA damage, and improving DNA repair.

3.
Animals (Basel) ; 14(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791693

ABSTRACT

Collective movement has emerged as a key area of interest in animal behavior. While individual differences are often viewed as a potential threat to group cohesion, growing evidence suggests that these differences can actually influence an animal's behavior as an initiator or follower during collective movements, thereby driving the group's movement and decision-making processes. To resolve the divergence, we asked how personality can affect the dynamics of collective movements in one group of free-ranging Tibetan macaques (Macaca thibetana) in Huangshan, China. We assessed individual personality using principal component analysis and applied the generalized linear mixed model and linear mixed model to examine the influence of personality on decision making during collective movements. Our findings reveled three distinct personality types among Tibetan macaques: sociability, boldness, and anxiousness. Individuals with higher sociability scores and rank, or those with lower anxiousness scores, were more likely to initiate successful collective movements. Older individuals were less successful in initiating movements compared to young adults. Leaders with lower anxiousness scores or higher rank attracted more followers, with females attracting larger groups than males. As for followers, individuals with higher rank tended to join the collective movement earlier. Additionally, individuals with higher sociability or boldness scores had shorter joining latency in collective movement. Finally, there was a longer joining latency for middle-aged adults compared to young adults. These results suggest that individual differences are a potential driver of collective movements. We provide some insights into the relationships between personality and decision making in Tibetan macaques.

4.
Int J Med Robot ; 20(3): e2640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38794828

ABSTRACT

BACKGROUND: Accurately estimating the 6D pose of snake-like wrist-type surgical instruments is challenging due to their complex kinematics and flexible design. METHODS: We propose ERegPose, a comprehensive strategy for precise 6D pose estimation. The strategy consists of two components: ERegPoseNet, an original deep neural network model designed for explicit regression of the instrument's 6D pose, and an annotated in-house dataset of simulated surgical operations. To capture rotational features, we employ an Single Shot multibox Detector (SSD)-like detector to generate bounding boxes of the instrument tip. RESULTS: ERegPoseNet achieves an error of 1.056 mm in 3D translation, 0.073 rad in 3D rotation, and an average distance (ADD) metric of 3.974 mm, indicating an overall spatial transformation error. The necessity of the SSD-like detector and L1 loss is validated through experiments. CONCLUSIONS: ERegPose outperforms existing approaches, providing accurate 6D pose estimation for snake-like wrist-type surgical instruments. Its practical applications in various surgical tasks hold great promise.


Subject(s)
Neural Networks, Computer , Surgical Instruments , Wrist , Humans , Wrist/surgery , Equipment Design , Biomechanical Phenomena , Algorithms , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Imaging, Three-Dimensional/methods , Rotation , Reproducibility of Results , Surgery, Computer-Assisted/instrumentation , Surgery, Computer-Assisted/methods , Regression Analysis
5.
Curr Drug Metab ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779735

ABSTRACT

OBJECTIVE: Waiganfengsha Granule, an over-the-counter drug, is commonly used for treating windheat cold and sore throat in clinical settings. However, its material basis of medicinal efficacy is still unclear. In this study, an efficient integrated analytical strategy was established for its chemical and metabolite profiles study. METHODS: Firstly, to avoid the possible false-positive results of structural elucidation, an in-house component library that contains chemical constituents reported in the literature from the six individual medicines of Waiganfengsha Granule was established. Secondary, mass data post-processing techniques, including precursor ion list and neutral loss filtering, were applied to enhance the identification accuracy. Thirdly, for the rapid characterization of those absorbed components after oral administration in rats, the identified chemical constituents were used as candidate components for the serum analysis. By comparing the retention time and analyzing mass data, the metabolites in rat plasma were identified. RESULTS: As a result, 57 chemical ingredients were identified, including 21 phenolic acids, 9 alkaloids, 2 flavonoids, 5 lignins, 13 saponins, and 7 other compounds. Among these, 12 compounds were unambiguously identified by comparison with reference standards, and 45 were tentatively characterized by analyzing their accurate MS data, MS/MS fragmentation patterns, and also by comparison with those data reported in the literature. Additionally, 46 metabolites were detected and identified in rat plasma. CONCLUSION: This study is beneficial for understanding the chemical composition and metabolic profiles of Waiganfengsha Granule, and the results obtained might provide a solid basis for further studies on its functional mechanism.

6.
Article in English | MEDLINE | ID: mdl-38770998

ABSTRACT

Tin dioxide (SnO2), in perovskite solar cells (PSCs), stands out as the material most suited to the electron transport layer (ETL), yielding advantages with regard to ease of preparation, high mobility, and favorable energy level alignment. Nonetheless, there is a chance that energy losses from defects in the SnO2 and interface will result in a reduction in the Voc. Consequently, optimizing the interfaces within solar cell devices is a key to augmenting both the efficiency and the stability of PSCs. Herein this present study, we introduced butylammonium chloride (BACl) into the SnO2 ETL. The resulting optimized SnO2 film mitigated interface defect density, thereby improving charge extraction. The robust bonding capability of negatively charged Cl- ions facilitated their binding with noncoordinated Sn4+ ions, effectively passivating defects associated with oxygen vacancies and enhancing charge transport within the SnO2 ETL. Concurrently, doped BA+ and Cl- diffused into the perovskite lattice, fostering perovskite grain growth and reducing the defects in perovskite. In comparison to the control device, the Voc saw a 70 mV increase, achieving a champion efficiency of 22.86%. Additionally, following 1000 h of ambient storage, the unencapsulated device based on SnO2 preburied with BACl retained around 90% of its initial photovoltaic conversion efficiency.

7.
Small ; : e2403342, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742947

ABSTRACT

Perovskite solar cell (PSC) is a promising photovoltaic technology that achieves over 26% power conversion efficiency (PCE). However, the high materials costs, complicated fabrication process, as well as poor long-term stability, are stumbling blocks for the commercialization of the PSCs in normal structures. The hole transport layer (HTL)-free carbon-based PSCs (C-PSCs) are expected to overcome these challenges. However, C-PSCs have suffered from relatively low PCE due to severe energy loss at the perovskite/carbon interface. Herein, the study proposes to boost the hole extraction capability of carbon electrode by incorporating functional manganese (II III) oxide (Mn3O4). It is found that the work function (WF) of the carbon electrode can be finely tuned with different amounts of Mn3O4 addition, thus the interfacial charge transfer efficiency can be maximized. Besides, the mechanical properties of carbon electrode can also be strengthened. Finally, a PCE of 19.03% is achieved. Moreover, the device retains 90% of its initial PCE after 2000 h of storage. This study offers a feasible strategy for fabricating efficient paintable HTL-free C-PSCs.

8.
Environ Sci Technol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743591

ABSTRACT

Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with Shewanella oneidensis MR-4. Results showed that along with the growth of cells, Fe(II) ions were increasingly released into solution and reacted with CO32- to form micrometer-sized siderite minerals with spindle, rod, peanut, dumbbell, and sphere shapes. They are composed of many single-crystal siderite plates that are fanned out from the center of the particles. Additionally, STXM revealed Fh and organic molecules inside siderite. This suggests that the siderite crystals might assemble around a Fh-organic molecule core and then continue to grow radially. This study illustrates the biomineralization and assembly of siderite by a successive multistep growth process induced by DIRB, also provides evidences that the distinctive shapes and the presence of organic molecules inside might be morphological and chemical features for biogenic siderite.

9.
J Colloid Interface Sci ; 668: 375-384, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678892

ABSTRACT

Urea electrolysis is an appealing topic for hydrogen production due to its ability to extract hydrogen at a lower potential. However, it is plagued by sluggish kinetics and noble-metal catalyst requirements. Herein, we developed nickel-iron-layered double hydroxide (NiFe-LDH) nanolayers with abundant oxygen vacancies (OV) via synergistically etching nickel foam with Fe3+ and Cl- ions, enabling the efficient conversion of urea into H2 and N2. The synthesized OV-NiFe-LDH exhibits a lower potential (1.30 vs. reversible hydrogen electrode, RHE) for achieving 10 mA cm-2 in the urea oxidation reaction (UOR), surpassing most recently reported Ni-based electrodes. OV provides favorable conductivity and a large surface area, which results in a 4.1-fold in electron transport and a 5.1-fold increase in catalyst reactive sites. Density Functional Theory (DFT) calculations indicate that OV can lower the adsorption energy of urea, and enhance the bonding strength of *CONHNH, giving rise to improved UOR. This study provides a viable path toward economical and efficient production of high-purity hydrogen.

10.
Environ Int ; 186: 108631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588609

ABSTRACT

Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.


Subject(s)
Autophagy , Inflammasomes , Inflammation , Methylmercury Compounds , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Methylmercury Compounds/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/drug effects , Microglia/metabolism , Autophagy/drug effects , Mice , Inflammasomes/metabolism , Animals , Inflammation/chemically induced , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects
11.
J Clin Invest ; 134(10)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625739

ABSTRACT

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-ß1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.


Subject(s)
Diabetic Nephropathies , Fibrosis , Renal Insufficiency, Chronic , Animals , Humans , Mice , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Mice, Knockout , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Male , Kidney/metabolism , Kidney/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , 3' Untranslated Regions
12.
Talanta ; 275: 126072, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615455

ABSTRACT

The detection of foodborne pathogenic bacteria is critical in preventing foodborne diseases. DNA-based electrochemical biosensors, with the merits of high sensitivity and short detection time, provide an effective detecting method for foodborne pathogens, attracting significant interest for the past few years. This review mainly describes the important research progress of DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria through four perspectives: representative foodborne pathogens detection using electrochemical approaches, DNA immobilization strategies of aptamers, DNA-based signal amplification strategies used in electrochemical DNA sensors, and functional DNA used in electrochemical DNA sensors. Finally, perspectives and challenges are presented in this field. This review will contribute to DNA-based electrochemical biosensor in enhancing the nucleic acid signal amplification.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Food Microbiology , Foodborne Diseases , Biosensing Techniques/methods , Electrochemical Techniques/methods , Foodborne Diseases/microbiology , Foodborne Diseases/diagnosis , Bacteria/isolation & purification , Bacteria/genetics , Aptamers, Nucleotide/chemistry , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Humans , DNA/analysis , DNA/chemistry
13.
Small ; : e2401464, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616766

ABSTRACT

Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.

14.
J Dairy Sci ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608956

ABSTRACT

Staphylococcus aureus (S. aureus) is a pathogenic bacterium-contaminating milk and dairy foods causing food poisoning and foodborne pathogens. In this work, a smartphone-enabled enzyme cascade-triggered colorimetric platform was constructed using cascade bio-nanozyme formed by immobilized glucose oxidase (GOx) on the Fe3O4@Ag for rapid detection of S. aureus. Benefiting from reasonable experimental design, a bio-nanozyme cascade-triggered reaction was achieved through H2O2 produced by GOx oxidation of glucose, followed by in situ catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) by the inherent peroxidase-like activity of Fe3O4@Ag to produce color signals. S. aureus detection could be performed through naked-eye observation and smartphone measurement, the developed assay can achieve quantitative and qualitative detection of S. aureus. The on-site nanoplatform had satisfactory specificity and sensitivity with a low detection limit of 6.9 cfu·mL-1 in 50 min. Moreover, the nanoplatform has good practicality in the detection of S. aureus in milk samples. Therefore, the assay has potential application prospects in food safety inspection.

15.
Anal Chem ; 96(16): 6417-6425, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38606984

ABSTRACT

Molecular imprinting-based surface-enhanced Raman scattering (MI-SERS) sensors have shown remarkable potential from an academic standpoint. However, their practical applications, especially in the detection of large-size protein (≥10 nm), face challenges due to the lack of versatile sensing strategies and nonspecific fouling of matrix species. Herein, we propose a Raman reporter inspector mechanism (RRIM) implemented on a protein-imprinted polydopamine (PDA) layer coated on the SERS active substrate. In the RRIM, after large-size protein recognition, the permeability of the PDA imprinted cavities undergoes changes that are scrutinized by Raman reporter molecules. Target proteins can specifically bind and fully occupy the imprinted cavities, whereas matrix species cannot. Then, Raman reporter molecules with suitable size are introduced to serve as both inspectors of the recognition status and inducers of the SERS signal, which can only penetrate through the vacant and nonspecifically filled cavities. Consequently, changes in the SERS signal exclusively originate from the specific binding of target proteins, while the nonspecific recognition of matrix species is curbed. The RRIM enables reproducible quantitation of the large-size cyanobacteria-specific protein model (≥10 nm), phycocyanin, at the level down to 2.6 × 10-3 µg L-1. Finally, the practical applicability of the RRIM is confirmed by accurately analyzing crude urban waterway samples over 21 min without any pretreatment.

16.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600111

ABSTRACT

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Oxidation-Reduction , Iron , Methane/metabolism , Minerals
17.
Cardiovasc Diagn Ther ; 14(1): 51-58, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38434566

ABSTRACT

Background: Ultrasound (US)-enhanced microbubble (MB) therapy has been investigated as a therapeutic technique to facilitate the thrombolysis for the treatment of pericardial and microvascular obstruction. This study sought to assess the therapeutic effects of long-pulsed US-assisted MB-mediated recombinant tissue plasminogen activator (rt-PA) thrombolysis in a rat model of platelet-rich thrombus. Methods: Ferric chloride (10%) was used to induce total arterial occlusion before formation of platelet-rich thrombi. Therapeutic long-tone-burst US (1 MHz, 0.6 MPa, 1,000-µs pulse length) was used, and 2.9×109/mL of lipid MBs and 1 mg/mL of rt-PA were infused. Subsequently, 42 Sprague-Dawley (SD) male rats were randomly divided into seven groups: (I) control; (II) rt-PA; (III) high duty cycle US + MB; (IV) low duty cycle US + rt-PA; (V) high duty cycle US + rt-PA; (VI) low duty cycle US + rt-PA + MB; and (VII) high duty cycle US + rt-PA + MB. The recanalization grades were evaluated after 20 minutes' treatment. Results: Compared to the control, there was significant improvement in recanalization in the US + rt-PA groups (P=0.01 vs. control), US (low duty cycle) + rt-PA + MB (P=0.003 vs. control) and US (high duty cycle) + rt-PA + MB (P<0.001 vs. control) groups, in which recanalization was successfully achieved in all rats. Conclusions: Long-pulsed US-enhanced MB-mediated rt-PA thrombolysis offered a powerful approach in the treatment of platelet-rich thrombus.

18.
Mol Neurobiol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448724

ABSTRACT

The pathological and physiological studies of Alzheimer's disease (AD) have been in-depth, and apolipoprotein E4 (ApoE4) has been proven to be highly correlated with AD, and clinical and experimental data show that ApoE4 can cause blood-brain barrier (BBB) injury, and the change of BBB permeability is an important factor affecting the development of AD. Andrographolide (Andro), as the active component of the natural plant Andrographis paniculata, has been proven to have anti-inflammatory and antioxidant effects, which have potential neuroprotective effects. To verify the protective effect of Andro on BBB in a short term, our research group used atorvastatin (Atorva)-mediated zebrafish brain injury model and the ApoE4-mediated cell co-culture model of BBB injury to explore the protective effects and mechanisms of Andro on BBB injury. Studies have shown that Andro can inhibit the activation of CypA/NF-κB/MMP-9 signaling pathway and has achieved the effect of antagonizing the inhibition of ApoE4 on intercellular tight junction proteins (occludin, claudin-5, and ZO-1). At the same time, Andro can inhibit the secretion of cell adhesion molecules (VCAM-1 and ICAM-1) in cells, thereby delaying the occurrence and progression of neuroinflammation and playing a protective role in BBB. In conclusion, Andro is a potent natural product which can protect the blood-brain barrier.

19.
Phys Rev E ; 109(2-1): 024209, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491594

ABSTRACT

We consider instability and localized patterns arising from the long-wave-short-wave resonance in the nonintegrable regime numerically. We study the stability and instability of elliptic-function periodic waves with respect to subharmonic perturbations, whose period is a multiple of the period of the elliptic waves. We thus find the modulational instability (MI) of the corresponding dnoidal waves. Upon varying parameters of dnoidal waves, spectrally unstable ones can be transformed into stable states via the Hamiltonian Hopf bifurcation. For snoidal waves, we find a transition of the dominant instability scenario between the MI and the instability with a bubblelike spectrum. For cnoidal waves, we produce three variants of the MI. Evolution of the unstable states is also considered, leading to formation of rogue waves on top of the elliptic-wave and continuous-wave backgrounds.

20.
Materials (Basel) ; 17(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473496

ABSTRACT

To address the most significant environmental challenges, the quest for high-performance gas sensing materials is crucial. Among numerous two-dimensional materials, this study investigates the gas-sensitive capabilities of monolayer As, Sb, and Bi materials. To compare the gas detection abilities of these three materials, we employ first-principles calculations to comprehensively study the adsorption behavior of NO and NO2 gas molecules on the material surfaces. The results indicate that monolayer Bi material exhibits reasonable adsorption distances, substantial adsorption energies, and significant charge transfer for both NO and NO2 gases. Therefore, among the materials studied, it demonstrates the best gas detection capability. Furthermore, monolayer As and Sb materials exhibit remarkably high capacities for adsorbing NO and NO2 gas molecules, firmly interacting with the gas molecules. Gas adsorption induces changes in the material's work function, suggesting the potential application of these two materials as catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...