Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 19(1): 747, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30314467

ABSTRACT

BACKGROUND: Transmissible gastroenteritis virus (TGEV) infection can activate NF-κB pathway in porcine intestinal epithelial cells and result in severe inflammation. Non-coding RNAs (ncRNAs) are not translated into proteins and play an important role in many biological and pathological processes such as inflammation, viral infection, and mitochondrial damage. However, whether ncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells is largely unknown. RESULTS: In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of mRNAs, miRNAs, and circRNAs in Mock- and TGEV-infected intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 523 mRNAs, 65 microRNAs (miRNAs), and 123 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed differentially expressed mRNAs were linked to inflammation-related pathways, including NF-κB, Toll-like receptor, NOD-like receptor, Jak-STAT, TNF, and RIG-I-like receptor pathways. The interactions among mRNA, miRNA, and circRNA were analyzed. The data showed that ssc_circ_009380 and miR-22 might have interaction relationship. Dual-luciferase reporter assay confirmed that miR-22 directly bound to ssc_circ_009380. We also observed that overexpression of miR-22 led to a reduction of p-IκB-α and accumulation of p65 in nucleus in TGEV-infected IPEC-J2 cells. In contrast, inhibition of miR-22 had the opposite effects. Moreover, silencing of ssc_circ_009380 inhibited accumulation of p65 in nucleus and phosphorylation of IκB-α. CONCLUSIONS: The data revealed that differentially expressed mRNAs and ncRNAs were primarily enriched in inflammation-related pathways and ssc_circ_009380 promoted activation of NF-κB pathway by binding miR-22 during TGEV-induced inflammation.


Subject(s)
Gene Expression Profiling , Intestinal Mucosa/cytology , NF-kappa B/metabolism , RNA, Untranslated/genetics , Transmissible gastroenteritis virus/physiology , Animals , Base Sequence , Cell Line , Gene Regulatory Networks , Inflammation/genetics , Inflammation/virology , RNA, Messenger/genetics , Sequence Analysis, RNA , Swine
2.
Mol Cell Proteomics ; 17(2): 190-204, 2018 02.
Article in English | MEDLINE | ID: mdl-29217619

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a member of the coronaviridae family, could cause fatal diarrhea of piglets and result in numerous economic losses. Previous studies demonstrated that TGEV infection could lead to mitochondrial damage and upregulate miR-4331 level. So miR-4331 may play an important regulatory role in the control of mitochondrial function. To explore the potential role of miR-4331 in mitochondrial damage, we adopted a strategy consisting of quantitative proteomic analysis of porcine kidney (PK-15) cells in response to miR-4331 and TGEV infection. Eventually, 69 differentially expressed proteins were gained. The target of miR-4331 was identified. The effects of miR-4331 and its target RB1 on mitochondrial Ca2+ level, mitochondrial membrane potential (MMP), interleukin-1 receptor accessory protein (IL1RAP), p38 MAPK signaling pathway were investigated. The results showed that miR-4331 elevated mitochondrial Ca2+ level, reduced MMP, targets Retinoblastoma 1 (RB1), upregulated IL1RAP, and induced activation of p38 MAPK pathway during TGEV infection. RB1 was identified as the direct targets of miR-4331 and downregulated IL1RAP, suppressed the activation of p38 MPAK, and attenuated TGEV-induced mitochondrial damage. In addition, IL1RAP played a positive role in activating p38 MAPK signaling and negative role in TGEV-induced mitochondrial damage. The data indicate that miR-4331 aggravates TGEV-induced mitochondrial damage by repressing expression of RB1, promoting IL1RAP, and activating p38 MAPK pathway.


Subject(s)
Interleukin-1 Receptor Accessory Protein/metabolism , MicroRNAs , Mitochondria/physiology , Retinoblastoma Protein/metabolism , Transmissible gastroenteritis virus , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Calcium/metabolism , Cell Line , Interleukin-1 Receptor Accessory Protein/genetics , Membrane Potential, Mitochondrial , Proteomics , Retinoblastoma Protein/genetics , Swine
3.
Vaccine ; 35(36): 4722-4729, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28755834

ABSTRACT

Porcine circovirus type 2 (PCV2) is the main pathogen of porcine circovirus associated disease (PCVAD), causing great economic losses in pig industry. In previous study, we constructed adenovirus vector vaccines expressing PCV2 Cap either modified with Intron A and WPRE, or CD40L and GMCSF, and evaluated all of these vaccines in mice and in pigs. Although Ad-A-C-W and Ad-CD40L-Cap-GMCSF could induce stronger immune responses than Ad-Cap, neither of them was better than commercial inactivated vaccine PCV2 SH-strain. In this study, secretory recombinant adenoviruses (Ad-A-spCap-W and Ad-A-spCD40L-spCap-spGMCSF-W) and non-secretory recombinant adenovirus Ad-A-CD40L-Cap-GMCSF-W were constructed, and identified by western blot and confocal laser microscope observation. The results of ELISA and VN showed that humoral immune responses induced by Ad-A-spCap-W and Ad-A-CD40L-Cap-GMCSF-W were not significantly different from SH-strain, but Ad-A-spCD40L-spCap-spGMCSF-W could induce significantly higher humoral immune response than SH-strain. Lymphocytes proliferative and cytokines releasing levels of Ad-A-spCap-W and Ad-A-CD40L-Cap-GMCSF-W were not significantly different from SH-strain, but Ad-A-spCD40L-spCap-spGMCSF-W was significantly higher than SH-strain. PCV2-challenge experiment showed that virus loads were significantly reduced in Ad-A-spCD40L-spCap-spGMCSF-W vaccinated group, and no obviously clinical and microscopic lesions were observed in Ad-A-spCD40L-spCap-spGMCSF-W vaccinated group. Altogether, these results demonstrate that recombinant adenovirus vaccine Ad-A-spCD40L-spCap-spGMCSF-W induces stronger immune responses and provides better protection than commercial inactivated vaccine PCV2 SH-strain, and suggest that Ad-A-spCD40L-spCap-spGMCSF-W could be a potential vaccine candidate against PCVAD.


Subject(s)
Adenovirus Vaccines/immunology , Capsid Proteins/immunology , Circovirus/immunology , Immunogenicity, Vaccine , Viral Vaccines/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Adenovirus Vaccines/administration & dosage , Adenovirus Vaccines/genetics , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD40 Ligand/genetics , CD40 Ligand/immunology , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Circoviridae Infections/prevention & control , Circovirus/genetics , Cytokines/biosynthesis , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Genetic Vectors , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Immunity, Humoral , Mice , Swine , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Load , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...