Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 103(30): e38891, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058835

ABSTRACT

Systolic dysfunction has been observed following isolated moderate-severe traumatic brain injury (Ims-TBI). However, early risk factors for the development of systolic dysfunction after Ims-TBI and their impact on the prognosis of patients with Ims-TBI have not been thoroughly investigated. A prospective observational study among patients aged 16 to 65 years without cardiac comorbidities who sustained Ims-TBI (Glasgow Coma Scale [GCS] score ≤12) was conducted. Systolic dysfunction was defined as left ventricular ejection fraction <50% or apparent regional wall motion abnormality assessed by transthoracic echocardiography within 24 hours after admission. The primary endpoint was the incidence of systolic dysfunction after Ims-TBI. The secondary endpoint was survival on discharge. Clinical data and outcomes were assessed within 24 hours after admission or during hospitalization. About 23 of 123 patients (18.7%) developed systolic dysfunction after Ims-TBI. Higher admission heart rate (odds ratios [ORs]: 1.05, 95% confidence interval [CI]: 1.02-1.08; P = .002), lower admission GCS score (OR: 0.77, 95% CI: 0.61-0.96; P = .022), and higher admission serum high-sensitivity cardiac troponin T (Hs-cTnT) (OR: 1.14, 95% CI: 1.06-1.22; P < .001) were independently associated with systolic dysfunction among patients with Ims-TBI. A combination of heart rate, GCS score, and serum Hs-cTnT level on admission improved the predictive performance for systolic dysfunction (area under curve = 0.85). Duration of mechanical ventilation, intensive care unit length of stay, and in-hospital mortality of patients with systolic dysfunction was higher than that of patients with normal systolic function (P < .05). Lower GCS (OR: 0.66, 95% CI: 0.45-0.82; P = .001), lower admission oxygen saturation (OR: 0.82, 95% CI: 0.69-0.98; P = .025), and the development of systolic dysfunction (OR: 4.85, 95% CI: 1.36-17.22; P = .015) were independent risk factors for in-hospital mortality in patients with Ims-TBI. Heart rate, GCS, and serum Hs-cTnT level on admission were independent early risk factors for systolic dysfunction in patients with Ims-TBI. The combination of these 3 parameters can better predict the occurrence of systolic dysfunction.


Subject(s)
Brain Injuries, Traumatic , Humans , Female , Male , Adult , Middle Aged , Risk Factors , Prospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/mortality , Young Adult , Adolescent , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/physiopathology , Aged , Glasgow Coma Scale , Echocardiography , Prognosis , Troponin T/blood , Heart Rate/physiology , Systole
2.
Biomed Pharmacother ; 168: 115816, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918254

ABSTRACT

OBJECTIVE: Hypoxic pulmonary hypertension (HPH) is a progressive and life-threatening disease characterized by perivascular inflammation, pulmonary vascular remodeling, and occlusion. Mesenchymal stromal cell-derived exosomes (MSC-exo) have emerged as potential therapeutic agents due to their role in cell communication and the transportation of bioactive molecules. In this study, we aimed to investigate the therapeutic effects of MSC-exo against HPH and elucidate the underlying molecular mechanism. METHODS: Exosomes were isolated from conditioned media of human bone mesenchymal stromal cells using ultracentrifugation and characterized through western blotting, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). An HPH animal model was established in male SD rats, and MSC-exo or phosphate-buffered saline (PBS) were administered via the tail vein for three weeks. Subsequently, right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and pulmonary vascular remodeling were evaluated. Lung tissues from HPH rats and normal rats underwent high-throughput sequencing and transcriptomic analysis. Gene Ontology (GO) analysis was employed to identify upregulated differentially expressed genes. Additionally, rat pulmonary artery smooth muscle cells (PASMC) exposed to platelet-derived growth factor-BB (PDGF-BB) were used to simulate HPH-related pathological behavior. In vitro cellular models were established to examine the molecular mechanism of MSC-exo in HPH. RESULTS: MSC-exo administration protected rats from hypoxia-induced increases in RVSP, RVHI, and pulmonary vascular remodeling. Additionally, MSC-exo alleviated PDGF-BB-induced proliferation and migration of PASMC. Transcriptomic analysis revealed 267 upregulated genes in lung tissues of HPH rats compared to control rats. Gene Ontology analysis indicated significant differences in pathways associated with Yes Associated Protein 1 (YAP1), a key regulator of cell proliferation and organ size. RT-qPCR and western blot analysis confirmed significantly increased expression of YAP1 in HPH lung tissues and PASMC, which was inhibited by MSC-exo treatment. Furthermore, analysis of datasets demonstrated that Secreted Phosphoprotein 1 (SPP1), also known as Osteopontin (OPN), is a downstream binding protein of YAP1 and can be upregulated by PDGF-BB. MSC-exo treatment reduced the expression of both YAP1 and SPP1. Lentivirus-mediated knockdown of YAP1 inhibited PDGF-BB-induced PASMC proliferation, migration, and SPP1 protein levels. CONCLUSION: Our findings demonstrate that MSC-exo exert a therapeutic effect against hypoxia-induced pulmonary hypertension by modulating the YAP1/SPP1 signaling pathway. The inhibition of YAP1 and downstream SPP1 expression by MSC-exo may contribute to the attenuation of pulmonary vascular remodeling and PASMC proliferation and migration. These results suggest that MSC-exo could serve as a potential therapeutic strategy for the treatment of HPH. Further investigations are warranted to explore the clinical applicability of MSC-exo-based therapies in HPH patients.


Subject(s)
Exosomes , Hypertension, Pulmonary , Mesenchymal Stem Cells , Humans , Rats , Male , Animals , Hypertension, Pulmonary/metabolism , Osteopontin/metabolism , Exosomes/metabolism , Becaplermin/pharmacology , Vascular Remodeling , Rats, Sprague-Dawley , Hypoxia/metabolism , Signal Transduction , Pulmonary Artery/metabolism , Mesenchymal Stem Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Cells, Cultured
3.
BMC Infect Dis ; 22(1): 164, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35189820

ABSTRACT

BACKGROUND: Infectious mononucleosis, a common disease in children and young adults, is often accompanied by elevated transaminase levels and rarely, liver failure. This study aimed to determine whether adenosine deaminase is a marker of severity in children with infectious mononucleosis, especially those with elevated alanine transaminase levels. METHODS: This case-control study was conducted at the Children's Hospital of Soochow University. A total of 104 children with infectious mononucleosis and 50 controls with other acute infections and fever, tonsillitis, or lymphadenitis, were enrolled in the study. Among the 104 children with infectious mononucleosis, 54 had normal alanine transaminase levels and 50 had elevated alanine transaminase levels. The children's clinical and laboratory data were analyzed to assess the diagnostic value of adenosine deaminase in the three groups. RESULTS: The adenosine deaminase level in the infectious mononucleosis group was significantly higher than that in the control group (P < 0.001). The adenosine deaminase levels were highly correlated with lymphocyte count, CD3+CD8+ T cells (%), CD4+/CD8+ ratio, and CD3-CD19+ (%) (r > 0.7, P < 0.01). The sensitivity and specificity of adenosine deaminase in predicting children with infectious mononucleosis were 97.1% and 94.0%, respectively. Furthermore, multivariate regression analysis revealed that adenosine deaminase level was a risk factor for elevated alanine transaminase in children with infectious mononucleosis. CONCLUSIONS: Adenosine deaminase may be a marker of the severity of infectious mononucleosis in children, and a predictor of elevated alanine transaminase in children with infectious mononucleosis.


Subject(s)
Herpesvirus 4, Human , Infectious Mononucleosis , Adenosine Deaminase , CD8-Positive T-Lymphocytes , Case-Control Studies , Humans , Infectious Mononucleosis/complications , Infectious Mononucleosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...