Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Int J Biol Macromol ; 271(Pt 1): 132580, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788871

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.

2.
Chin Med J (Engl) ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738696

ABSTRACT

BACKGROUND: Histological healing is closely associated with improved long-term clinical outcomes and lowered relapses in patients with ulcerative colitis (UC). Here, we developed a novel diagnostic criterion for assessing histological healing in UC patients. METHODS: We conducted a retrospective cohort study in UC patients, whose treatment was iteratively optimized to achieve mucosal healing at Shanghai Tenth People's Hospital of Tongji University from January 2017 to May 2022. We identified an inflammatory cell enumeration index (ICEI) for assessing histological healing based on the proportions of eosinophils, CD177+ neutrophils, and CD40L+ T cells in the colonic lamina propria under high power field (HPF), and the outcomes (risks of symptomatic relapses) of achieving histological remission vs. persistent histological inflammation using Kaplan-Meier curves. Intrareader reliability and inter-reader reliability were evaluated by each reader. The relationships to the changes in the Nancy index and the Geboes score were also assessed for responsiveness. The ICEI was further validated in a new cohort of UC patients from other nine university hospitals. RESULTS: We developed an ICEI for clinical diagnosis of histological healing, i.e., Y = 1.701X1 + 0.758X2 + 1.347X3 - 7.745 (X1, X2, and X3 represent the proportions of CD177+ neutrophils, eosinophils, and CD40L+ T cells, respectively, in the colonic lamina propria under HPF). The receiver operating characteristics curve (ROC) analysis revealed that Y <-0.391 was the cutoff value for the diagnosis of histological healing and that an area under the curve (AUC) was 0.942 (95% confidence interval [CI]: 0.905-0.979) with a sensitivity of 92.5% and a specificity of 83.6% (P <0.001). The intraclass correlation coefficient (ICC) for the intrareader reliability was 0.855 (95% CI: 0.781-0.909), and ICEI had good inter-reader reliability of 0.832 (95% CI: 0.748-0.894). During an 18-month follow-up, patients with histological healing had a substantially better outcome compared with those with unachieved histological healing (P <0.001) using ICEI. During a 12-month follow-up from other nine hospitals, patients with histological healing also had a lower risk of relapse than patients with unachieved histological healing. CONCLUSIONS: ICEI can be used to predict histological healing and identify patients with a risk of relapse 12 months and 18 months after clinical therapy. Therefore, ICEI provides a promising, simplified approach to monitor histological healing and to predict the prognosis of UC. REGISTRATION: Chinese Clinical Trial Registry, No. ChiCTR2300077792.

3.
Micromachines (Basel) ; 15(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38793197

ABSTRACT

Ultrasonic wireless power transfer technology (UWPT) represents a key technology employed for energizing implantable medical devices (IMDs). In recent years, aluminum nitride (AlN) has gained significant attention due to its biocompatibility and compatibility with complementary metal-oxide-semiconductor (CMOS) technology. In the meantime, the integration of scandium-doped aluminum nitride (Al90.4%Sc9.6%N) is an effective solution to address the sensitivity limitations of AlN material for both receiving and transmission capabilities. This study focuses on developing a miniaturized UWPT receiver device based on AlScN piezoelectric micro-electromechanical transducers (PMUTs). The proposed receiver features a PMUT array of 2.8 × 2.8 mm2 comprising 13 × 13 square elements. An acoustic matching gel is applied to address acoustic impedance mismatch when operating in liquid environments. Experimental evaluations in deionized water demonstrated that the power transfer efficiency (PTE) is up to 2.33%. The back-end signal processing circuitry includes voltage-doubling rectification, energy storage, and voltage regulation conversion sections, which effectively transform the generated AC signal into a stable 3.3 V DC voltage output and successfully light a commercial LED. This research extends the scope of wireless charging applications and paves the way for further device miniaturization by integrating all system components into a single chip in future implementations.

4.
Opt Express ; 32(7): 11737-11750, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571014

ABSTRACT

This paper provides an extensive discussion of a complex amplitude-based dynamic three-dimensional deformation measurement method, in which the phase and amplitude of the speckle field are used for out-of-plane and in-plane deformation calculation respectively. By determining the optimal polarization states of the speckle field and reference field from the comprehensive analysis of measurement mathematical model in the principle of polarization multiplexing, the 3-step phase-shifting interferograms and one speckle gram can be directly recorded by a polarization camera in a single shot. The out-of-plane deformation would be recovered from the subtraction of speckle phases that are demodulated by a special least square algorithm; speckle gram with improved quality is offered for correlation computation to obtain in-plane deformation. The advancement and significance of the optimized strategy are intuitively demonstrated by comparing the measurement accuracy under different combinations of polarization states. Finally, the dynamic thermal deformation experiment reveals the potential in practical real-time applications.

5.
Int Immunopharmacol ; 131: 111833, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38503012

ABSTRACT

Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Liver/pathology , Inflammation/metabolism , Fibrosis , Macrophages/metabolism
6.
J Phys Chem Lett ; 15(7): 1818-1827, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38330253

ABSTRACT

While extensive research has been dedicated to plasmon tuning within non-noble metals, prior investigations primarily concentrated on markedly augmenting the inherently low concentration of free carriers in materials with minimal consideration given to the influence of electron orbitals on surface plasmons. Here, we achieve successful intercalation of Au atoms into the layered structure of Fe3GeTe2 (FGT), thereby exerting control over the orbital electronic states or structure of FGT. This intervention not only amplifies the charge density and electron mobility but also mitigates the loss associated with interband transitions, resulting in increased two-dimensional FGT surface plasmon activity. As a consequence, Au-intercalated FGT detects crystal violet molecules as a surface-enhanced Raman scattering substrate, and the detection lines are 3 orders of magnitude higher than before Au intercalation. Our work provides insight for further studies on plasmon effects and the relation between surface plasmon resonance behavior and electronic structures.

7.
Sci Rep ; 14(1): 947, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200054

ABSTRACT

Preservatives are essential components in cosmetic products, but their safety issues have attracted widespread attention. There is an urgent need for safe and effective alternatives. Antimicrobial peptides (AMPs) are part of the innate immune system and have potent antimicrobial properties. Using machine learning-assisted rational design, we obtained a novel antibacterial peptide, IK-16-1, with significant antibacterial activity and maintaining safety based on ß-defensins. IK-16-1 has broad-spectrum antimicrobial properties against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, and has no haemolytic activity. The use of IK-16-1 holds promise in the cosmetics industry, since it can serve as a preservative synergist to reduce the amount of other preservatives in cosmetics. This study verified the feasibility of combining computational design with artificial intelligence prediction to design AMPs, achieving rapid screening and reducing development costs.


Subject(s)
Antimicrobial Peptides , Cosmetics , Humans , Artificial Intelligence , Machine Learning , Anti-Bacterial Agents , Candida albicans , Escherichia coli , Preservatives, Pharmaceutical/pharmacology
8.
Heliyon ; 10(2): e24182, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38268834

ABSTRACT

The Laplacian spectrum significantly contributes the study of the structural features of non-regular networks. Actually, it emphasizes the interaction among the network eigenvalues and their structural properties. Let Pn(Pn') represent the pentagonal-derivation cylinder (Möbius) network. In this article, based on the decomposition techniques of the Laplacian characteristic polynomial, we initially determine that the Laplacian spectra of Pn contain the eigenvalues of matrices LR and LS. Furthermore, using the relationship among the coefficients and roots of these two matrices, explicit calculations of the Kirchhoff index and spanning trees of Pn are determined. The relationship between the Wiener and Kirchhoff indices of Pn is also established.

9.
Int Arch Allergy Immunol ; 185(2): 170-181, 2024.
Article in English | MEDLINE | ID: mdl-37963429

ABSTRACT

INTRODUCTION: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by relapsed eczema and serious pruritus. High-mobility group box 1 protein (HMGB1) is a nuclear-binding protein and serves as an alarmin to promote inflammatory responses. METHODS: In this study, we established an AD mouse model by topical use of MC903 on ears and then used a specific HMGB1-binding peptide cIY8 and a HMGB1 inhibitor of glycyrrhizin to investigate HMGB1 on fibroblast activation in the pathogenesis of AD-like symptoms. RESULTS: Topical use of cIY8 and oral use of glycyrrhizin significantly improved the MC903-induced AD-like symptoms and pathological changes of the ears and scratching behavior in an AD mouse model; cIY8 treatment inhibited the higher mRNAs of IL-1α, IL-4, IL-5, IL-13, and IL-31 in the ears. In human fibroblasts, HMGB1 caused nuclear translocation of NF-kB, and the nuclear translocation could be inhibited by pre-treatment of HMGB1 with cIY8, suggesting that NF-κB signaling pathway participates in the HMGB1-induced inflammation of AD in fibroblasts and that cIY8 effectively impedes the function of HMGB1. Glycyrrhizin inhibited the Ca2+ signaling induced by ionomycin in mouse primary fibroblasts. The fibroblast-related proteins of α-SMA, Hsp47, and vimentin and the pruritus-related proteins of IL-33 and periostin were increased in the ears of the AD mouse model, the ratio of EdU incorporation became higher in mouse fibroblasts treated with MC903, and the higher proliferation and inflammatory responses of the fibroblasts could be reversed by glycyrrhizin treatment. CONCLUSIONS: Fibroblast activation by HMGB1 is one of the critical processes in the development of inflammation and pruritus in the AD mouse model. The specific HMGB1-binding peptide cIY8 and the HMGB1 inhibitor glycyrrhizin inactivate skin fibroblasts to alleviate the inflammation and pruritus in the AD mouse model. Peptide cIY8 may be topically used to treat AD patients in the future.


Subject(s)
Dermatitis, Atopic , HMGB1 Protein , Animals , Humans , Mice , Cytokines/metabolism , Dermatitis, Atopic/etiology , Glycyrrhizic Acid/adverse effects , HMGB1 Protein/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-13/metabolism , NF-kappa B/metabolism , Pruritus/drug therapy , Pruritus/metabolism , Skin/pathology
10.
J Ethnopharmacol ; 322: 117503, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38043755

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colonic mucosa, accompanied with abdominal pain, and bloody diarrhea. Currently, clinical treatment options for UC are limited. Qingchang Wenzhong Decoction (QCWZD) is an effective prescription of traditional Chinese medicine for the treatment of UC. However, the mechanism of QCWZD in alleviating intestinal barrier dysfunction in UC has not been clearly explained. AIM OF THE STUDY: To determine the mechanism whereby QCWZD promotes the recovery of intestinal barrier dysfunction in UC. MATERIALS AND METHODS: A secondary analysis of colonic mucosa from UC patients acquired from a prior RCT clinical trial was performed. The effects of QCWZD on intestinal mucus and mechanical barriers in UC patients were evaluated using colon tissue paraffin-embedded sections from UC patients. The mechanism was further investigated by in vivo and in vitro experiments. UC mice were established in sterile water with 3.0% dextran sodium sulfate (DSS). Meanwhile, mice in the treatment group were dosed with QCWZD or mesalazine. In vitro, an intestinal barrier model was constructed using Caco-2 and HT29 cells in co-culture. GC-C plasmid was used to overexpress/knock down GC-C to clarify the target of QCWZD. HE, AB-PAS, ELISA, immunohistochemistry and immunofluorescence assays were used to assess the level of colonic inflammation and intestinal barrier integrity. Rt-qPCR, Western Blot were used to detect the expression of genes and proteins related to GC-C signaling pathway. Molecular docking was used to simulate the binding sites of major components of QCWZD to GC-C. RESULTS: In UC patients, QCWZD increased mucus secretion, goblet cell number, and promoted MUC2 and ZO-1 expression. QCWZD accelerated the recovery of UC mice from DSS-induced inflammation, including weight gain, reduced disease activity index (DAI) scores, colon length recovery, and histological healing. QCWZD promoted mucus secretion and increased ZO-1 expression in in vivo and in vitro experiments, thereby repairing mucus mechanical barrier damage. The effects of QCWZD are mediated through regulation of the GC-C signaling pathway, which in turn affects CFTR phosphorylation and MUC2 expression to promote mucus secretion, while inhibiting the over-activation of MLCK and repairing tight junctions to maintain the integrity of the mechanical barrier. Molecular docking results demonstrate the binding of the main components of QCWZD to GC-C. CONCLUSION: Our study demonstrated that QCWZD modulates the GC-C signaling pathway to promote remission of mucus-mechanical barrier damage in the UC. The clarification of the mechanism of QCWZD holds promise for the development of new therapies for UC.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Caco-2 Cells , Molecular Docking Simulation , Inflammation/drug therapy , Colon , Signal Transduction , Intestinal Mucosa , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Colitis/chemically induced
11.
Phytother Res ; 38(2): 970-999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38112572

ABSTRACT

Ulcerative colitis (UC), a chronic and nonspecific inflammatory disease of the intestine, has become a prevalent global health concern. This guideline aims to equip clinicians and caregivers with effective strategies for the treatment and management of adult UC patients using traditional Chinese medicine (TCM). The guideline systematically evaluated contemporary evidence through the Grading of Recommendations Assessment, Development, and Evaluation framework. Additionally, it incorporated insights from ancient Chinese medical sources, employing the evidence grading method found in traditional TCM literature. The development process involved collaboration with multidisciplinary experts and included input from patients with UC. The guideline, based on a comprehensive review of available evidence, present 40 recommendations. They offer a condensed overview of TCM's role in understanding the pathogenesis, diagnosis, and treatment of UC, along with an assessment of the efficacy of various TCM-based treatments. TCM exhibits promising outcomes in the treatment of UC. However, to establish its efficacy conclusively, further high-quality clinical studies on TCM for UC are essential.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Adult , Humans , Medicine, Chinese Traditional/methods , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/therapeutic use
12.
Gut Microbes ; 15(2): 2290315, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38062857

ABSTRACT

Intestinal microbiota dysbiosis and metabolic disruption are well-known as the primary triggers of ulcerative colitis (UC). However, their role in regulating the group 3 innate lymphoid cells (ILC3s), which are essential for intestinal health, remains unexplored during the development of disease severity. Here, our results showed that the microbiota structure of patients with severe UC (SUCs) differed from those with mild UC (MiUCs), moderate UC (MoUCs), and healthy controls (HCs). Microbes producing secondary bile acids (SBAs) and SBAs decreased with the aggravation of UC, and a strong positive correlation existed between them. Next, fecal microbiota transfer was used to reproduce the human-derived microbiota in mice and decipher the microbiota-mediated inflammatory modulation during an increase in disease severity. Mice receiving SUC-derived microbiota exhibited enhancive inflammation, a lowered percentage of ILC3s, and the down-regulated expressions of bile acid receptors, including vitamin D receptor (VDR) and pregnane X receptor (PXR), in the colon. Similar to clinical results, SBA-producing microbes, deoxycholic acids (DCA), and 12-ketolithocholic acids (12-KLCA) were diminished in the intestine of these recipients. Finally, we compared the therapeutic potential of DCA and 12-KLCA in preventing colitis and the regulatory mechanisms mediated by ILC3s. 12-KLCA but not DCA represented a strong anti-inflammatory effect associated with the higher expression of VDR and the lower secretion of IL-17A from colonic ILC3s. Collectively, these findings provide new signatures for monitoring the acute deterioration of UC by targeting gut microbiota and bile acid metabolism and demonstrate the therapeutic and preventive potential of a novel microbiota-derived metabolite, 12-KLCA.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Humans , Mice , Bile Acids and Salts/metabolism , Colitis/metabolism , Colitis, Ulcerative/drug therapy , Colon/metabolism , Dextran Sulfate , Disease Models, Animal , Immunity, Innate/drug effects , Interleukin-17/metabolism , Interleukin-17/pharmacology , Lymphocytes/drug effects , Mice, Inbred C57BL
13.
Opt Express ; 31(21): 33830-33841, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859154

ABSTRACT

This paper proposes a flexible and accurate dynamic quantitative phase imaging (QPI) method using single-shot transport of intensity equation (TIE) phase retrieval achieved by division of focal plane (DoFP) polarization imaging technique. By exploiting the polarization property of the liquid crystal spatial light modulator (LC-SLM), two intensity images of different defocus distances contained in orthogonal polarization directions can be generated simultaneously. Then, with the help of the DoFP polarization imaging, these images can be captured with single exposure, enabling accurate dynamic QPI by solving the TIE. In addition, our approach gains great flexibility in defocus distance adjustment by adjusting the pattern loaded on the LC-SLM. Experiments on microlens array, phase plate, and living human gastric cancer cells demonstrate the accuracy, flexibility, and dynamic measurement performance for various objects. The proposed method provides a simple, flexible, and accurate approach for real-time QPI without sacrificing the field of view.

14.
J Phys Chem Lett ; 14(38): 8477-8484, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37721451

ABSTRACT

It is difficult to perfectly analyze the enhancement mechanism of two-dimensional (2D) materials and their combination with precious metals as surface enhanced Raman scattering (SERS) substrates using chemical enhancement mechanisms. Here, we propose a new mentality based on the coupling effect of neighboring electron orbitals to elucidate the electromagnetic field enhancement mechanism of single-atom-layer Au clusters embedded in double-layer 2H-TaS2 for SRES sensing. The insertion of Au atoms into the 2H-TaS2 interlayer was verified by XRD, AFM, and HRTEM, and a SERS signal enhancement of 2 orders of magnitude was obtained compared to the pure 2H-TaS2. XPS and micro-UV/vis-NIR spectra indicate that the outer electrons of neighboring Au and 2H-TaS2 overlap and migrate from Au to 2H-TaS2. First-principles calculations suggest strong electronic coupling between Au and 2H-TaS2. This study offers insights into SERS enhancement in nonprecious metal compounds and guides the development of new SERS substrates.

15.
Opt Express ; 31(16): 25635-25647, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710445

ABSTRACT

We propose a fast and robust method for calibrating Spatial Light Modulators (SLMs) based on polarization phase-shifting interferometry. Our method effectively calibrates the SLM by addressing both the static aberration and nonlinear phase response, utilizing specially designed gray images loaded sequentially onto the SLM. Notably, we introduce a novel kinoform that effectively eliminates the influence of tilt phase shift between two shots of the polarization camera. This results in a highly accurate phase aberration map and phase modulation curve with exceptional stability, making it an ideal method to calibrate the SLM with exceptional efficiency and precision in real applications.

16.
Radiology ; 308(2): e230457, 2023 08.
Article in English | MEDLINE | ID: mdl-37642572

ABSTRACT

Background Hepatocellular carcinomas (HCCs) can be divided into proliferative and nonproliferative types, which may have implications for outcomes after conventional transarterial chemoembolization (cTACE). Biopsy to identify proliferative HCC is not routinely performed before cTACE. Purpose To develop and validate a predictive model for identifying proliferative HCCs using CT imaging features and to compare therapeutic outcomes between predicted proliferative and nonproliferative HCCs after cTACE according to this model. Materials and Methods This retrospective multicenter study included adults with HCC who underwent liver resection or cTACE between August 2013 and December 2020. A CT-based predictive model for identifying proliferative HCCs was developed and externally validated in a cohort that underwent resection. Diagnostic performance was calculated for the model. Thereafter, patients in the cTACE cohort were stratified into groups with predicted proliferative or nonproliferative HCCs according to the model. The primary outcome was overall survival (OS), and the secondary outcomes were tumor response rate and progression-free survival (PFS). These were compared between the two groups with use of the χ2 test and the log-rank test. Results A total of 1194 patients (1021 men; mean age, 54 years ± 12 [SD]; median follow-up time, 29.1 months) were included. The predictive model, named the SMARS score, incorporated lobulated shape, mosaic architecture, α-fetoprotein levels, rim arterial phase hyperenhancement, and satellite lesions. The area under the receiver operating characteristic curve for the SMARS score was 0.83 for the training cohort and 0.80 for the validation cohort. According to the SMARS score, patients with predicted proliferative HCCs (n = 114) had lower tumor response rate (48% vs 71%; P < .001) and worse PFS (6.6 months vs 12.4 months; P < .001) and OS (14.4 months vs 38.7 months; P < .001) than those with nonproliferative HCCs (n = 263). Conclusion The predictive model demonstrated good performance for identifying proliferative HCCs. According to the SMARS score, patients with predicted proliferative HCCs have worse prognosis than those with predicted nonproliferative HCCs after cTACE. © RSNA, 2023 Supplemental material is available for this article.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Adult , Male , Humans , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Progression-Free Survival , Tomography, X-Ray Computed
17.
Obes Surg ; 33(9): 2831-2840, 2023 09.
Article in English | MEDLINE | ID: mdl-37507634

ABSTRACT

BACKGROUND: Being overweight or obese is becoming increasingly prevalent worldwide and seriously endangers human health. Laparoscopic sleeve gastrectomy (LSG) has been successfully used for the treatment of severe obesity, but the incidence of postoperative nausea and vomiting (PONV) is high. However, traditional antiemetics have limited effects on PONV. Electropress needle therapy, which can be enhanced with electrical stimulation, is a promising therapy for the prevention and treatment of PONV. However, whether the electropress needle is effective for PONV in patients with LSG remains uncertain. METHODS: This was a prospective, randomized controlled trial. A total of 106 patients who planned to undergo elective LSG between October 2021 and July 2022 were randomly allocated to receive electropress needle stimulation combined with dexamethasone and granisetron (group A) or dexamethasone plus granisetron (group B). The primary outcome was the incidence of PONV 48 h after surgery. The secondary outcomes were PONV severity score, time to first flatus, length of hospital stay, visual analogue scale (VAS) score, and postoperative remedial medication use. RESULTS: Compared with dexamethasone plus granisetron, electropress needle stimulation combined with dexamethasone and granisetron significantly decreased the incidence and severity of PONV (P<0.001). Patients in Group A consumed less antiemetics postoperatively (P<0.05) and had a much shorter length of postoperative hospital stay (P<0.05). There was no difference in the time to first flatus between the two groups (P > 0.05). CONCLUSION: Electropress needle acupoint stimulation can reduce the incidence and severity of PONV in patients undergoing LSG.


Subject(s)
Antiemetics , Laparoscopy , Obesity, Morbid , Humans , Postoperative Nausea and Vomiting/drug therapy , Antiemetics/therapeutic use , Granisetron/therapeutic use , Prospective Studies , Flatulence/drug therapy , Laparoscopy/adverse effects , Obesity, Morbid/surgery , Gastrectomy/adverse effects , Obesity/surgery , Dexamethasone/therapeutic use , Double-Blind Method
18.
Sci Total Environ ; 893: 164915, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37331405

ABSTRACT

Urbanization is altering the co-occurrence networks of ecological communities that are critical to maintaining ecosystem functions and services. Soil microbial communities play key roles in various ecosystem processes, but how soil microbial co-occurrence networks respond to urbanization is unclear. Here we analyzed co-occurrence networks in soil archaeal, bacterial, and fungal communities from 258 soil sampling sites across the megacity of Shanghai along large urbanization gradients. We found that topological features of microbial co-occurrence networks were strongly altered by urbanization. In particular, microbial communities in more urbanized land-use and highly impervious land cover had less connected and more isolated network structures. These structural variations were accompanied by the dominance of connectors and module hubs affiliated with the Ascomycota in fungi and Chloroflexi in bacteria, and there were greater losses in efficiency and connectivity in urbanized than in remnant land-use in simulated disturbances. Furthermore, even though soil properties (especially soil pH and organic carbon) were major factors shaping topological features of the microbial networks, urbanization still uniquely explained a proportion of the variability, particularly those describing network connections. These results demonstrate that urbanization has clear direct and indirect effects on microbial networks and provide novel insights into how urbanization alters soil microbial communities.


Subject(s)
Microbiota , Soil , Soil/chemistry , Ecosystem , Urbanization , Soil Microbiology , China , Bacteria , Fungi
19.
Anal Chem ; 95(27): 10257-10264, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37329306

ABSTRACT

Surface-enhanced Raman scattering (SERS) substrates mostly achieve highly sensitive detection by designing various hot spots; however, how to guide molecules to hot spots and prevent them from leaving has not been thoroughly considered and studied. Here, a composite MoS2/Ag NP nanopocket detector composed of MoS2 covered with a Ag NP film was fabricated to develop a general SERS method for actively capturing target molecules into hotspots. A finite element method (FEM) simulation of the multiphysics model was used to analyze the distributions of electric field enhancements and hydrodynamic processes in solution and air of the MoS2/Ag NP nanopocket. The results revealed that covering MoS2 slowed the evaporation of the solution, extended the window period for SERS detection, and enhanced the electric field in comparison with the monolayer Ag NP film. Therefore, in the process of dynamic detection, the MoS2/Ag NP nanopocket can provide an efficient and stable signal within 8 min, increasing the high sensitivity and long-term stability of the SERS method. Furthermore, a MoS2/Ag NP nanopocket detector was applied to detect antitumor drugs and monitor hypoxanthine structural changes in serum, which demonstrated long-term stability and high sensitivity for SERS analysis. This MoS2/Ag NP nanopocket detector paves the way for developing the SERS method in various fields.

20.
Front Immunol ; 14: 1155077, 2023.
Article in English | MEDLINE | ID: mdl-37197668

ABSTRACT

Ulcerative colitis (UC), a type of inflammatory bowel disease characterized by recurring and incurable symptoms, causes immense suffering and economic burden for patients due to the limited treatment options available. Therefore, it is imperative to develop novel and promising strategies, as well as safe and effective drugs, for the clinical management of UC. Macrophages play a critical role as the initial line of defense in maintaining intestinal immune homeostasis, and their phenotypic transformation significantly influences the progression of UC. Scientific studies have demonstrated that directing macrophage polarization toward the M2 phenotype is an effective strategy for the prevention and treatment of UC. Phytochemicals derived from botanical sources have garnered the interest of the scientific community owing to their distinct bioactivity and nutritional value, which have been shown to confer beneficial protective effects against colonic inflammation. In this review, we explicated the influence of macrophage polarization on the development of UC and collated data on the significant potential of natural substances that can target the macrophage phenotype and elucidate the possible mechanism of action for its treatment. These findings may provide novel directions and references for the clinical management of UC.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/drug therapy , Inflammatory Bowel Diseases/drug therapy , Macrophages , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...