Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Sci Rep ; 14(1): 16379, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013968

ABSTRACT

The heat distribution information of human lesions is of great value for disease analysis, diagnosis, and treatment. It is a typical inverse problem of heat conduction that deriving the distribution of internal heat sources from the temperature distribution on the body surface. This paper transforms such an inverse problem of bio-heat transfer into a direct one, thereby avoiding complex boundary conditions and regularization processes. To noninvasively reconstruct the internal heat source and its corresponding 3D temperature field in biological tissue, the adaptive simulated annealing (ASA) algorithm is used in the simulation module, where the position P(x, y, z) of point heat source in biological tissue and its corresponding temperature T are set as the optimization variables. Under a certain optimized sample, one can obtain the simulated temperature distributing on the surface of the module, then subtract the simulated temperature from the measured temperature of the same surface which was measured using a thermal infrared imager. If the sum of absolute values of the difference is smaller, it indicates that the current sample is closer to the true location and temperature of the heat source. When the values of optimization variables are determined, the corresponding 3D temperature field is also confirmed. The simulation results show the simulated position and temperature of the heat source are very approximate with those of the real experimental module. The method presented in this paper has enormous potential and promising prospects in clinical research and application, such as tumor hyperthermia, disease thermal diagnosis technology, etc.


Subject(s)
Algorithms , Hot Temperature , Humans , Computer Simulation , Thermal Conductivity , Models, Biological
4.
Arch Dermatol Res ; 316(5): 195, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775978

ABSTRACT

Chronic arsenic exposure is a global health hazard significantly associated with the development of deleterious cutaneous changes and increased keratinocyte cancer risk. Although arsenic exposure is associated with broad-scale cellular and molecular changes, gaps exist in understanding how these changes impact the skin and facilitate malignant transformation. Recently developed epigenetic "clocks" can accurately predict chronological, biological and mitotic age, as well as telomere length, on the basis of tissue DNA methylation state. Deviations of predicted from expected age (epigenetic age dysregulation) have been associated with numerous complex diseases, increased all-cause mortality and higher cancer risk. We investigated the ability of these algorithms to detect molecular changes associated with chronic arsenic exposure in the context of associated skin lesions. To accomplish this, we utilized a multi-algorithmic approach incorporating seven "clocks" (Horvath, Skin&Blood, PhenoAge, PCPhenoAge, GrimAge, DNAmTL and epiTOC2) to analyze peripheral blood of pediatric and adult cohorts of arsenic-exposed (n = 84) and arsenic-naïve (n = 33) individuals, among whom n = 18 were affected by skin lesions. Arsenic-exposed adults with skin lesions exhibited accelerated epigenetic (Skin&Blood: + 7.0 years [95% CI 3.7; 10.2], q = 6.8 × 10-4), biological (PhenoAge: + 5.8 years [95% CI 0.7; 11.0], q = 7.4 × 10-2, p = 2.8 × 10-2) and mitotic age (epiTOC2: + 19.7 annual cell divisions [95% CI 1.8; 37.7], q = 7.4 × 10-2, p = 3.2 × 10-2) compared to healthy arsenic-naïve individuals; and accelerated epigenetic age (Skin&Blood: + 2.8 years [95% CI 0.2; 5.3], q = 2.4 × 10-1, p = 3.4 × 10-2) compared to lesion-free arsenic-exposed individuals. Moreover, lesion-free exposed adults exhibited accelerated Skin&Blood age (+ 4.2 [95% CI 1.3; 7.1], q = 3.8 × 10-2) compared to their arsenic-naïve counterparts. Compared to the pediatric group, arsenic-exposed adults exhibited accelerated epigenetic (+ 3.1 to 4.4 years (95% CI 1.2; 6.4], q = 2.4 × 10-4-3.1 × 10-3), biological (+ 7.4 to 7.8 years [95% CI 3.0; 12.1] q = 1.6 × 10-3-2.8 × 10-3) and mitotic age (+ 50.0 annual cell divisions [95% CI 15.6; 84.5], q = 7.8 × 10-3), as well as shortened telomere length (- 0.23 kilobases [95% CI - 0.13; - 0.33], q = 2.4 × 10-4), across all seven algorithms. We demonstrate that lifetime arsenic exposure and presence of arsenic-associated skin lesions are associated with accelerated epigenetic, biological and mitotic age, and shortened telomere length, reflecting altered immune signaling and genomic regulation. Our findings highlight the usefulness of DNA methylation-based algorithms in identifying deleterious molecular changes associated with chronic exposure to the heavy metal, serving as potential prognosticators of arsenic-induced cutaneous malignancy.


Subject(s)
Arsenic , DNA Methylation , Epigenesis, Genetic , Telomere Shortening , Humans , Adult , Arsenic/adverse effects , Arsenic/toxicity , Female , DNA Methylation/drug effects , Telomere Shortening/drug effects , Male , Child , Adolescent , Young Adult , Middle Aged , Mitosis/drug effects , Mitosis/genetics , Skin/pathology , Skin/drug effects , Skin Diseases/chemically induced , Skin Diseases/genetics , Skin Diseases/pathology , Skin Neoplasms/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology
7.
Article in English | MEDLINE | ID: mdl-38381513

ABSTRACT

A novel Gram-stain-negative, curved rod-shaped, motile and chitin-degrading strain, designated CD1T, was isolated from crawfish pond sediment in Caidian District (30° 58' N 114° 03' E), Wuhan City, Hubei Province, PR China. Growth of this strain was observed at 15-40°C (optimum between 28 and 30 °C), at pH 7.0-9.0 (optimum between pH 7.0 and 8.0) and with 0-1 % (w/v) NaCl (optimum at 0 %). With respect to the 16S rRNA gene sequences, strain CD1T had the highest similarity (96.91-97.25 %) to four type strains of the genera 'Chitinolyticbacter' and Chitiniphilus within the family Chitinibacteraceae. The phylogenetic trees based on genome sequences and 16S rRNA gene sequences indicated that strain CD1T was close to members of these two genera, in particular to the genus Chitiniphilus. The genomic DNA G+C content of strain CD1T was 64.8 mol%. The average nucleotide identity and the Genome-to-Genome Distance Calculator results showed low relatedness (below 95 and 70 %, respectively) between strain CD1T and the closely related type strains. Ubiquinone-8 was the predominant quinone. The major cellular fatty acids were C10 : 0, C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile was composed of a mixture of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified lipids, two unidentified phospholipids, two unidentified aminolipids and an unidentified aminoglycolipid. On the basis of the evidences presented in this study, strain CD1T represents a novel species of the genus Chitiniphilus, for which the name Chitiniphilus purpureus sp. nov. is proposed, with strain CD1T (=CCTCC AB 2022395T=KCTC 92850T) as the type strain.


Subject(s)
Betaproteobacteria , Chitin , Phylogeny , Ponds , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria
8.
J Colloid Interface Sci ; 660: 943-952, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38281475

ABSTRACT

Molybdenum selenide (MoSe2) has shown potential sodium storage properties due to its large layer spacing (0.646 nm) and high theoretical capacity and narrow band gap. However, as the anode material of sodium ion batteries (SIBs), the MoSe2's performance is not ideal, especially due to the layer agglomeration and stacking caused by volume expansion and low intrinsic conductivity. Hence, morphology design and electronic configuration of MoSe2 is proposed via building MoSe2 nanosheets and auxiliary sulfur doping on the surface of the TiO2 hollow nanosphere (S-MoSe2@TiO2). The hierarchical shaped S-MoSe2@TiO2 effectively overcomes the shortcomings of high surface energy and weak interlayer van der Waals force of MoSe2. As anode for SIBs, S-MoSe2@TiO2 delivers enhanced cycling life and rate capability (308 mAh/g at 10 A/g after 1000 cycles) with the comparison of MoSe2@TiO2 or pure MoSe2 and TiO2. Such excellent sodium storage performance is due to the fast diffusion kinetics of Na+. When it is applied in sodium ion full batteries, the S-MoSe2@TiO2 anode based cell can reach a high energy density of 187.8 W h kg-1 at 148.3 W kg-1. The design of the new MoSe2-based hybrid provides a novel scheme for the preparation of advanced anode in SIBs.

9.
J Oral Rehabil ; 51(5): 886-897, 2024 May.
Article in English | MEDLINE | ID: mdl-38151884

ABSTRACT

BACKGROUND: Botulinum toxin type A (BTX-A) is increasingly used to manage painful temporomandibular disorders (TMD). However, the effect of BTX-A on muscular TMD remains unclear. OBJECTIVE: To assess the efficacy, safety and optimal dose of BTX-A for treating TMD. METHODS: We conducted systematic literature searches in MEDLINE, Embase, Web of Science, ClinicalTrials.gov and Cochrane Library until March 2023. We extracted data from randomized controlled trials (RCTs) that evaluated the efficacy and safety of BTX-A in treating muscular TMD. We performed a meta-analysis using a random-effects model. RESULTS: Fifteen RCTs involving 504 participants met the inclusion criteria. BTX-A was significantly more effective than placebo in reducing pain intensity, as measured on a 0-10 scale, at 1 month (MD [95% CI] = -1.92 [-2.87, -0.98], p < .0001) and 6 months (MD [95% CI] -2.08, [-3.19 to -0.98]; p = .0002). A higher dosage of BTX-A (60-100 U bilaterally) was associated with a greater reduction in pain at 6 months (MD [95% CI] = -2.98 [-3.52, -2.44]; p < .001). BTX-A also resulted in decreased masseter muscle intensity (µV) (MD [95% CI] = -44.43 [-71.33, -17.53]; p = .001) at 1 month and occlusal force (kg) at 3 months (MD [95% CI] = -30.29 [-48.22 to -12.37]; p = .0009). There was no significant difference in adverse events between BTX-A and placebo. CONCLUSIONS: BTX-A is a safe and effective treatment for reducing pain and improving temporomandibular muscle and joint function in muscular TMD patients. A bilateral dose of 60-100 U might be an optimal choice for treating muscular TMD pain.


Subject(s)
Botulinum Toxins, Type A , Temporomandibular Joint Disorders , Humans , Botulinum Toxins, Type A/therapeutic use , Randomized Controlled Trials as Topic , Pain/drug therapy , Temporomandibular Joint Disorders/drug therapy , Treatment Outcome
10.
J Colloid Interface Sci ; 652(Pt B): 1427-1437, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659311

ABSTRACT

The development of high-quality anode materials is critical for the advancement of sodium-ion batteries (SIBs). MoSe2 is a candidate anode for SIBs, while its inherent limitations, such as the agglomeration of nanosheets, poor electron conductance and mechanical strain due to volume changes during cycling, which can lead to decreased performance and durability in SIBs. To overcome the challenges, a novel aliovalent doping and structural engineering was taken to prepare reduced graphene oxide (rGO) functionalized and phosphorus-doped MoSe2 flake (P-MoSe2@rGO) via in situ growth technique. The unique structural design of P-MoSe2@rGO addresses material limitations and optimizes performance by providing a high conductive grid for ion/electron transfer, a large surface area for full electrolyte penetration, and effective suppression of MoSe2 nanosheet agglomeration and mechanical strain due to volume change during charge/discharge in SIBs. The P-MoSe2@rGO inherits the enhanced electronic conductivity and enlarged layer spacing (from 0.652 to 0.668 nm), which boosts the reaction kinetics and facilitates the insertion/extraction of sodium ions. The P-MoSe2@rGO exhibits excellent long-cycle properties with a high reversible capacity of 384 mAh/g at 2 A/g and 338 mAh/g at 10 A/g after 1450 circulations. Detailed discussion of reaction kinetics is conducted. Theoretical calculations prove that doping of P atoms in MoSe2 reduces the forbidden band gap from 1.443 to 1.397 eV and accelerates ion and electron migration. Furthermore, the full cell P-MoSe2@rGO//Na3V2(PO4)3@C (NVP@C) demonstrates a remarkable cycling durability of 326 mAh/g after 200 cycles and a high energy density of 159.6 Wh kg-1. This process provides a reference for the adjustment and modification of MoSe2 to adapt to high performance SIBs anode.

11.
Math Biosci Eng ; 20(8): 14180-14200, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37679131

ABSTRACT

Knowledge graph embedding aims to learn representation vectors for the entities and relations. Most of the existing approaches learn the representation from the structural information in the triples, which neglects the content related to the entity and relation. Though there are some approaches proposed to exploit the related multimodal content to improve knowledge graph embedding, such as the text description and images associated with the entities, they are not effective to address the heterogeneity and cross-modal correlation constraint of different types of content and network structure. In this paper, we propose a multi-modal content fusion model (MMCF) for knowledge graph embedding. To effectively fuse the heterogenous data for knowledge graph embedding, such as text description, related images and structural information, a cross-modal correlation learning component is proposed. It first learns the intra-modal and inter-modal correlation to fuse the multimodal content of each entity, and then they are fused with the structure features by a gating network. Meanwhile, to enhance the features of relation, the features of the associated head entity and tail entity are fused to learn relation embedding. To effectively evaluate the proposed model, we compare it with other baselines in three datasets, i.e., FB-IMG, WN18RR and FB15k-237. Experiment result of link prediction demonstrates that our model outperforms the state-of-the-art in most of the metrics significantly, implying the superiority of the proposed method.

12.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2212-2221, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282909

ABSTRACT

This study aimed to investigate the mechanism of resveratrol(RES) combined with irinotecan(IRI) in the treatment of colorectal cancer(CRC). The targets of RES, IRI, and CRC were obtained from databases, and the targets of RES combined with IRI in the treatment of CRC were acquired by Venn diagram. The protein functional cluster analysis, GO and KEGG enrichment analyses were performed. In addition, the protein-protein interaction(PPI) network was constructed. The core target genes were screened out and the target-signaling pathway network was set up. IGEMDOCK was used to dock the core target gene molecules. Besides, the relationship between the expression level of key target genes and the prognosis and immune infiltration of CRC was analyzed. Based on the in vitro cell experiment, the molecular mechanism of RES combined with IRI in the treatment of CRC was explored and analyzed. According to the results, 63 potential targets of RES combined with IRI were obtained for CRC treatment. Furthermore, cluster analysis revealed that protein functions included 23% transmembrane signal receptors, 22% protein modifying enzymes, and 14% metabolite converting enzymes. GO analysis indicated that BPs were mainly concentrated in protein autophosphorylation, CCs in receptor complex and plasma membrane, and MFs in transmembrane receptor protein tyrosine kinase activity. Moreover, KEGG signaling pathways were mainly enriched in central carbon metabolism in cancer. The key targets of RES combined with IRI in the treatment of CRC were PIK3CA, EGFR, and IGF1R, all of which were significantly positively correlated with the immune infiltration of CRC. As shown by the molecular docking results, PIK3CA had the most stable binding with RES and IRI. Compared with the results in the control group, the proliferation ability and EGFR protein expression of CRC cells in the RES-treated group, the IRI-treated group, and the RES+IRI treated group significantly decreased. Moreover, the cell proliferation ability and EGFR protein expression level of CRC cells in the RES+IRI treated group were remarkably lower than those in the IRI-treated group. In conclusion, PIK3CA, EGFR, and IGF1R are the key targets of RES combined with IRI in CRC treatment. In addition, RES can inhibit the proliferation of CRC cells and improve IRI chemoresistance by downregulating the EGFR signaling pathway.


Subject(s)
Colorectal Neoplasms , Humans , Irinotecan , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Resveratrol , Molecular Docking Simulation , ErbB Receptors/genetics
13.
Article in English | MEDLINE | ID: mdl-37173094

ABSTRACT

Family physicians provide comprehensive care for the community and are an integral part of the healthcare system. Canada is experiencing a shortage of family physicians, driven in part by overbearing expectations of family physicians, limited support and resources, antiquated physician compensation, and high clinic operating costs. An additional factor contributing to this scarcity is the shortage of medical school and family medicine residency spots, which have not kept pace with population demand. We analysed and compared data on provincial populations and numbers of physicians, residency spots and medical school seats across Canada. Family physician shortages are the highest in the territories (>55%), Quebec (21.5%) and British Columbia (17.7%). Among the provinces, Ontario, Manitoba, Saskatchewan and British Columbia have the fewest family physicians per 100 000 persons in the population. Among the provinces that offer medical education, British Columbia and Ontario have the fewest medical school seats per population, while Quebec has the most. British Columbia has the smallest medical class size and the least number of family medicine residency spots as a function of population, and one of the highest percentages of provincial residents without family doctors. Paradoxically, Quebec has a relatively large medical class size and a high number of family medicine residency spots as a function of population, but also one of the highest percentages of provincial residents without family doctors. Possible strategies to improve the current shortage include encouraging Canadian medical students and international medical graduates to consider family medicine, and reducing administrative burdens for current physicians. Other steps include creating a national data framework, understanding physician needs to guide effective policy changes, increasing seats in medical schools and family residency programmes, providing financial incentives and facilitating entry into family medicine for international medical graduates.


Subject(s)
Education, Medical , Physicians, Family , Humans , Family Practice/education , British Columbia , Biopsy
14.
Zhongguo Zhong Yao Za Zhi ; 48(2): 517-524, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725241

ABSTRACT

In recent years, the clinical treatment of colorectal cancer(CRC) has made great progress, but chemoresistance is still one of the main reasons for reducing the survival rate of patients with colorectal cancer. Therefore, ameliorating chemotherapy resis-tance is an urgent problem to be solved. The purpose of this study was to investigate the regulatory role and related molecular mechanisms of hydroxysafflor yellow A(HSYA) in colorectal cancer cell proliferation, migration, and 5-fluorouracil(5-FU) chemoresistance. In this study, HCT116 and HT-29 cells were used as research subjects. Firstly, methyl thiazolyl tetrazolium(MTT) assay and colony formation assay were used to detect and analyze the effect of HSYA on the proliferation of CRC cells. Secondly, the effect of HSYA on the cell cycle in CRC cells was analyzed by cell cycle assay. Furthermore, the effect of HSYA on the migration of CRC cells was analyzed by wound-healing assay and Transwell assay. Based on the above, the influences of HSYA on 5-FU chemoresistance of CRC cells and related molecular mechanisms were explored and analyzed. The results showed that HSYA significantly inhibited the proliferation and migration of CRC cells, and arrested the cell cycle in G_0/G_1 phase. In addition, HSYA significantly ameliorated the chemoresistance of CRC cells to 5-FU. The results of acridine orange staining and Western blot showed that the autophagy activity of CRC cells in the HSYA and 5-FU combined treatment group was significantly higher than that in the 5-FU single drug treatment group. As compared with the 5-FU single drug treatment group, the phosphorylation levels of protein kinase B(Akt) and mammalian target of rapamycin(mTOR) in the HSYA and 5-FU combined treatment group were significantly reduced, indicating that the Akt/mTOR signaling pathway in the combined treatment group was down-regulated in CRC cells. In conclusion, HSYA may upregulate autophagy activity through the Akt/mTOR signaling pathway, thereby inhibiting the proliferation and migration of CRC cells and ameliorating the chemoresistance to 5-FU.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Fluorouracil/pharmacology , Cell Proliferation , Autophagy , Colorectal Neoplasms/drug therapy
15.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6613-6623, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212021

ABSTRACT

The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 µg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.


Subject(s)
Pinellia , Plants, Medicinal , Pinellia/genetics , Plant Breeding , Phenotype , Uridine
16.
Front Genet ; 13: 971588, 2022.
Article in English | MEDLINE | ID: mdl-36338955

ABSTRACT

Structural variants (SVs) are one of the main sources of genetic variants and have a greater impact on phenotype evolution, disease susceptibility, and environmental adaptations than single nucleotide polymorphisms (SNPs). However, SVs remain challenging to accurately type, with several detection methods showing different limitations. Here, we explored SVs from 10 different chickens using PacBio technology and detected 49,501 high-confidence SVs. The results showed that the PacBio long-read detected more SVs than Illumina short-read technology genomes owing to some SV sites on chromosomes, which are related to chicken growth and development. During chicken domestication, some SVs beneficial to the breed or without any effect on the genomic function of the breed were retained, whereas deleterious SVs were generally eliminated. This study could facilitate the analysis of the genetic characteristics of different chickens and provide a better understanding of their phenotypic characteristics at the SV level, based on the long-read sequencing method. This study enriches our knowledge of SVs in chickens and improves our understanding of chicken genomic diversity.

17.
Clin Neuropharmacol ; 45(6): 168-174, 2022.
Article in English | MEDLINE | ID: mdl-36383915

ABSTRACT

OBJECTIVES: Parkinson disease (PD) is the second most common neurodegenerative disorder, and no disease-modifying medications are available. Ursodeoxycholic acid (UDCA) has been shown to prevent neuronal damage; however, the effect of UDCA on PD is unclear. This study aimed to the role of UDCA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. METHODS: Mice were divided into 3 experimental groups: the control group, MPTP group, and UDCA-treat group. Mice were tested for behavioral impairments, and slices at the level of the ventral midbrain were collected to perform hematoxylin and eosin and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and immunohistochemistry. To evaluate the levels of dopamine (DA), serotonin (5-HT), antioxidant markers, and inflammatory cytokines, enzyme-linked immunoassays were carried out. The protein (α-synuclein, p38, phospho-p38, c-Jun N-terminal kinase [JNK], and phospho-JNK) expression was examined adopting Western blot. RESULTS: We found that UDCA reduced the MPTP-induced degeneration of DA neurons, improved behavioral impairments, and decreased the protein level of α-synuclein, accompanied with increases of DA and 5-HT. In the present study, UDCA prevented DA neurons from MPTP toxicity with increased superoxide dismutase, catalase, glutathione, and decreased malondialdehyde levels. Ursodeoxycholic acid prevented DA neurons from MPTP toxicity with decreased levels of tumor necrosis factor α, interferon γ, and interleukin (IL)-1ß, IL-6, and IL-10. Our results demonstrated that UDCA inhibited the phosphorylation of JNK and p38MAPK. CONCLUSIONS: This study revealed protective effects of UDCA against oxidative stress and neuroinflammation through mitogen-activated protein kinases pathways in MPTP-induced PD, suggesting that UDCA may be a novel therapeutic candidate for PD.


Subject(s)
Parkinson Disease , Mice , Humans , Animals , Parkinson Disease/drug therapy , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology , alpha-Synuclein/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , Neuroinflammatory Diseases , Serotonin/metabolism , Serotonin/pharmacology , Serotonin/therapeutic use , Mice, Inbred C57BL , Oxidative Stress , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
18.
Genomics ; 114(6): 110515, 2022 11.
Article in English | MEDLINE | ID: mdl-36306957

ABSTRACT

Piao chicken, a Chinese indigenous rumpless chicken breed, lacks pygostyle, caudal vertebra, uropygial gland and tail feathers. The rumplessness in Piao chicken presents an autosomal dominant inheritance pattern. However, the molecular genetic mechanisms underlying the rumplessness in Piao chicken remains unclear. In this study, whole-genome resequencing was performed for 146 individuals from 10 chicken breeds, including 9 tailed chicken breeds and Piao rumpless breed. Tailbone CT scan for Piao chickens and WL chickens, revealed that some Piao chicken tails were normal in number, and for a few Piao chickens tail length and tail bone numbers were between the rumpless and the normal tailed chickens. The results showed that the rumpless phenotype has not been completely fixed in Piao chicken breed. Using selection signature analysis and structural variation detection, we found a 4174 bp deletion located in the upstream region of IRX1 gene on chromosome 2 related to rumpless phenotype. Structural variation genotyping showed that the deletion was present in all 32 rumpless Piao chickens (del/del, wild/del) and absent from all 112 tailed chickens included in the dataset for the other 9 breeds and 2 tailed Piao chickens (wild/wild). In summary, all rumpless Piao chickens tested here carry this deletion mutation, to show a complete linkage association with rumplessness trait. We suggested that the 4174 bp deletion could be causative for rumpless phenotype in Piao chicken since this is the only mutation to show the complete linkage disequilibrium with rumplessness on whole genome level across all of 146 chickens from the 10 breeds. This study could facilitate a better understanding of the genetic characteristics of Piao chicken.


Subject(s)
Chickens , Animals , Chickens/genetics
19.
Poult Sci ; 101(11): 102163, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36163094

ABSTRACT

The number of egg-laying is an important indicator of reproduction performance in poultry breeding. To investigate the relationship between the function of Angiotensin-converting enzyme (ACE) and egg-laying performance of Taihang chicken, the mRNA and protein expression and single nucleotide polymorphism (SNP) of ACE were detected. Analysis of ACE bioinformatics and association analysis of polymorphisms were then performed. The polymorphisms analysis of ACE showed that three SNP loci (g.5066812A>C, g.5080076G>A, and g.5072728A>G) were detected in 800 Taihang chickens with egg-laying records. Association analysis of egg-laying found that ACE g.5066812A>C mutation was significantly associated with the egg-laying performance of Taihang chickens (P < 0.05), and the individuals with the g.5066812A>C mutation showed significantly increasing egg-laying. The mRNA expression was significantly higher in individuals with the AA genotype mutation than those with the AC and CC genotypes (P < 0.01), and the expression of ACE protein levels was consistent with the mRNA expression. Bioinformatics analysis indicated that these mutations affected the secondary and tertiary structure of ACE. This study provides new insights into ACE affecting chicken egg production and some basis for improving the egg production rate of Taihang chickens.


Subject(s)
Chickens , Ovum , Animals , Chickens/genetics , Oviposition/genetics , Phenotype , Polymorphism, Single Nucleotide , RNA, Messenger/genetics
20.
Life (Basel) ; 12(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013441

ABSTRACT

The duodenum is an important digestive organ for poultry and houses a variety of microbes that help chickens to enhance nutrient absorption and improve production. To evaluate the characteristic of gut microbiome, duodenum content samples from 42-week-old native Taihang chickens with high (H) and low (L) egg-yielding were collected for 16S rRNA amplicon sequencing analysis. Consequently, 1,361,341 sequences were clustered into 2055 OTUs, with percentages of affiliation of 96.50 and 57.30% at phylum and genus levels. Firmicutes, Proteobacteria, Cyanobacteria and Bacteroidetes were the dominant phylum, with a lower ratio of Firmicutes/Bacteroidetes in H group than in L group (p < 0.05). At genus level, overrepresentation of Bacteroides, Faecalibacterim, and Enterococcus and underrepresentation of Romboutsia were found in H group. No significant difference in overall diversity of microbiota was observed between two groups. LEFSe analysis revealed Enterococcus was significantly enriched in H group. Importantly, Enterococcus and Lactobacillus were negatively correlated. Functional prediction analysis showed the proportion of microbiota involved in the metabolism process was the highest and enriched in H group. Differences in microbiota composition between the two groups, which may be related to intestinal function difference, also provide promising biomarkers for improving laying hen production.

SELECTION OF CITATIONS
SEARCH DETAIL
...