Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 15(8): 1001-1015, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36541705

ABSTRACT

The nanostructure of Ag nanoparticles (NPs) plays a critical role in their surface-enhanced Raman scattering (SERS) activity. Despite many efforts to tune the nanostructure of Ag NPs, it remains a great challenge as Ag NPs tend to agglomerate and their nanostructure is difficult to control. Herein, newly-discovered clay-surfactant-Ag+ materials and interfacial processes were developed and used to prepare uniform spherical Ag@synthetic hectorite (Ag@Hct) nanomaterials for ultrasensitive SERS assay. Sodium dodecyl sulfate (SDS), an anionic surfactant, acted as a bridge to conjugate the positively charged edge of Hct NPs and Ag+via electrostatic interaction to form the bridging nanostructure of Hct-SDS-Ag+, which promoted the uniform dispersion of Hct NPs. Following this, Ag+ was reduced to Ag0 by the reductant, and Ag0 grew on the surface of disc-like Hct NPs to form spherical Ag@Hct nanomaterials with an average particle size of ∼24 nm. The prepared Ag@Hct nanomaterials showed an ultrasensitive SERS response to methylene blue (MB) with a detection limit of 10-12 M. The detection limit of MB in sewage was 10-11 M. The prepared Ag@Hct nanomaterials also exhibited great SERS enhancement for malachite green and crystal violet. This work provides a novel and simple approach to prepare Ag@Hct nanomaterials with uniform spheres and adjustable particle size, allowing more sensitive and reproducible detection of MB.

2.
Soft Matter ; 17(43): 9819-9841, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34698330

ABSTRACT

Montmorillonite (Mt) can readily undergo spontaneous delamination or exfoliation into nanolayers by various physical and chemical processes, which allow various strategies to engineer hierarchical functional inorganic-organic nanostructures. This review aims to discuss the recent progress in the liquid-phase exfoliation of Mt into individual nanolayers and the inclusion chemistry of functional organic species, ions, or molecules into the exfoliated Mt nanolayers to produce hierarchical functional inorganic-organic nanostructures. The exfoliation methods include mechanical force, ultrasonication, and intercalation-assisted exfoliation. Techniques for quickly assessing the quality of the exfoliated Mt nanolayers are still needed. Layer-by-layer (LbL) deposition, template, and evaporation-induced inclusions are examined to fabricate hierarchical Mt-organic species nanocomposites with unique functionalities and properties. The nanocomposites can be produced as multilayered porous films, brick-and-mortar coatings, hydrogels with a house-of-cards structure, core-shell materials, and hollow and mesoporous spherical nanocomposites, which exhibit significant potential for adsorption, catalysis, targeted delivery and controlled drug release, highly sensitive sensors, flame retardant coatings, and thermal energy storage and release (i.e. phase change materials). Finally, the challenges and prospects for the future development of hierarchical nanocomposites of exfoliated Mt nanolayers and organic species, particularly in hierarchical supramolecular nanostructured composites, are highlighted.

3.
PLoS One ; 9(8): e105797, 2014.
Article in English | MEDLINE | ID: mdl-25162517

ABSTRACT

Zinc plays a critical role in many biological processes. However, it is toxic at high concentrations and its homeostasis is strictly regulated by metal-responsive transcription factor 1 (MTF-1) together with many other proteins to protect cells against metal toxicity and oxidative stresses. In this paper, we used high-resolution two-dimensional gel electrophoresis (2DE) to profile global changes of the whole soluble proteome in human lung adenocarcinoma (A549) cells in response to exogenous zinc treatment for 24 h. Eighteen differentially expressed proteins were identified by MALDI TOF/TOF and MASCOT search. In addition, we used Western blotting and RT-PCR to examine the time-dependent changes in expression of proteins regulated by MTF-1 in response to Zn treatment, including the metal binding protein MT-1, the zinc efflux protein ZnT-1, and the zinc influx regulator ZIP-1. The results indicated that variations in their mRNA and protein levels were consistent with their functions in maintaining the homeostasis of zinc. However, the accumulation of ZIP-1 transcripts was down-regulated while the protein level was up-regulated during the same time period. This may be due to the complex regulatory mechanism of ZIP-1, which is involved in multiple signaling pathways. Maximal changes in protein abundance were observed at 10 h following Zn treatment, but only slight changes in protein or mRNA levels were observed at 24 h, which was the time-point frequently used for 2DE analyses. Therefore, further study of the time-dependent Zn-response of A549 cells would help to understand the dynamic nature of the cellular response to Zn stress. Our findings provide the basis for further study into zinc-regulated cellular signaling pathways.


Subject(s)
DNA-Binding Proteins/genetics , Epithelial Cells/drug effects , Proteome/genetics , Pulmonary Alveoli/drug effects , RNA, Messenger/genetics , Transcription Factors/genetics , Zinc Sulfate/pharmacology , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , Homeostasis/genetics , Humans , Metallothionein/genetics , Metallothionein/metabolism , Proteome/metabolism , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , RNA, Messenger/metabolism , Signal Transduction , Stress, Physiological , Time Factors , Transcription Factors/metabolism , Transcription Factor MTF-1
4.
Biol Trace Elem Res ; 154(3): 418-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23839533

ABSTRACT

As a non-toxic metal to humans, zinc is essential for cell proliferation, differentiation, regulation of DNA synthesis, genomic stability and mitosis. Zinc homeostasis in cells, which is crucial for normal cellular functioning, is maintained by various protein families including ZnT (zinc transporter/SLC30A) and ZIP (Zrt-, Irt-like proteins/SLC39A) that decrease and increase cytosolic zinc availability, respectively. In this study, we investigated the influences of a specific concentration range of ZnSO4 on cell cycle and apoptosis by flow cytometry, and cell viability by MTT method in MDAMB231, HepG2 and 293 T cell lines. Fluorescent sensors NBD-TPEA and the counterstain for nuclei Hoechst 33342 were used to stain the treated cells for observing the localisation and amount of Zn(2+) via laser scanning confocal microscope. It was found that the influence manners of ZnSO4 on cell cycle, apoptosis and cell viability in various cell lines were different and corresponding to the changes of Zn(2+) content of the three cell lines, respectively. The significant increase on intracelluar zinc content of MDAMB231 cells resulted in cell death, G1 and G2/M cell cycle arrest and increased apoptotic fraction. Additionally, the mRNA expression levels of ZnT and ZIP families in the three cell lines, when treated with high concentration of ZnSO4, increased and decreased corresponding to their functions, respectively.


Subject(s)
Apoptosis/drug effects , Cell Cycle/drug effects , Zinc/pharmacology , Apoptosis/genetics , Cation Transport Proteins/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Dose-Response Relationship, Drug , Flow Cytometry , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/genetics , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Microscopy, Confocal , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Zinc/metabolism , Zinc Sulfate/metabolism , Zinc Sulfate/pharmacology
5.
Biosci Biotechnol Biochem ; 76(11): 2014-20, 2012.
Article in English | MEDLINE | ID: mdl-23132559

ABSTRACT

As the second most abundant transition metal in humans, zinc plays essential roles in normal cellular biological functions, including metabolism, signalling, proliferation, gene expression and apoptosis. We use ZnSO(4) as a stressor in this study to investigate for the first time the effects of exogenous Zn(2+) on both the cellular distribution of zinc and zinc-related proteins and the cell cycle of human lung adenocarcinoma (A549) cells. The cellular distribution of zinc and soluble proteins was determined in the whole cell as well as in the cytoplasmic and nuclear fractions. Exogenous zinc in the tested exposure range (0-100 µM) resulted in an altered cellular distribution of both zinc and the soluble proteins, together with total glutathione (GSx), the ratio of glutathione (GSH) to glutathione disulfide (GSSG) and non-protein sulphydryl (NPSH). Surprisingly, a turning point was observed in the re-distribution trend at a concentration of approximately 50 µM ZnSO(4). It is concluded that there exists a regulatory system in A549 cells that maintains the cellular zinc content stable in the presence of a certain range of extracellular zinc concentration. In addition, an MTT assay and flow cytometric analysis showed that the ZnSO(4) treatment led to a bi-phasic variation in viability and a slight fluctuation in the apoptosis of A549 cells. Our results will help to further elucidate zinc-related cell biology and biochemistry.


Subject(s)
Cell Cycle/drug effects , Zinc Sulfate/metabolism , Zinc Sulfate/pharmacology , Apoptosis/drug effects , Biological Transport/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Gene Expression Regulation/drug effects , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...