Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(40): e2302885, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37264726

ABSTRACT

The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible.

SELECTION OF CITATIONS
SEARCH DETAIL
...