Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant J ; 99(6): 1047-1065, 2019 09.
Article in English | MEDLINE | ID: mdl-31063672

ABSTRACT

Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.


Subject(s)
Arabidopsis/genetics , Oryza/metabolism , Plants, Genetically Modified/metabolism , Vitamin B 6/biosynthesis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Infections/genetics , Bacterial Infections/metabolism , Bacterial Infections/pathology , Carbon-Nitrogen Lyases/genetics , Carbon-Nitrogen Lyases/metabolism , Endosperm/metabolism , Gene Expression Regulation, Plant/genetics , Nitrogenous Group Transferases/genetics , Nitrogenous Group Transferases/metabolism , Oryza/genetics , Oryza/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/physiology , Seeds/metabolism , Transgenes , Vitamin B 6/metabolism , Xanthomonas/pathogenicity
2.
Environ Toxicol ; 34(3): 303-311, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30576070

ABSTRACT

Bergapten is a natural compound and has potent anticancer activities. In this study, we explored the cytotoxicity of bergapten on colorectal cancer (CRC) cell DLD-1 and LoVo and its underlying mechanisms. We observed that bergapten (30 and 50 µM) decreased the viability of the CRC cells and induced the G0/G1 and sub-G1 phase arrest. Furthermore, immunoblotting results indicated that bergapten increased p53, phospho-p53(Ser-46), p21, PUMA, Bax, PTEN, and the caspase-9 and caspase-3 cleavage, but decreased cyclin E, CDK2, and phosphor-AKT(Ser-473) in the CRC cells. Inhibition of p53 by pifithrin-α reversed the bergapten-induced p53-mediated apoptotic cascade and restored the survival signaling and cell viability. Collectively, our findings reveal that bergapten decrease the cell viability and induce cell cycle arrest in the CRC cells, which may be attributed to p53-mediated apoptotic cascade, upregulation of p21 and PTEN, and inhibition of AKT.


Subject(s)
5-Methoxypsoralen/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/physiopathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cyclin E/genetics , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Humans , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , PTEN Phosphohydrolase/genetics , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics
4.
Front Plant Sci ; 4: 143, 2013.
Article in English | MEDLINE | ID: mdl-23734155

ABSTRACT

Vitamin B6 has an essential role in cells as a cofactor for several metabolic enzymes. It has also been shown to function as a potent antioxidant molecule. The recent elucidation of the vitamin B6 biosynthesis pathways in plants provides opportunities for characterizing their importance during developmental processes and exposure to stress. Humans and animals must acquire vitamin B6 with their diet, with plants being a major source, because they cannot biosynthesize it de novo. However, the abundance of the vitamin in the edible portions of the most commonly consumed plants is not sufficient to meet daily requirements. Genetic engineering has proven successful in increasing the vitamin B6 content in the model plant Arabidopsis. The added benefits associated with the enhanced vitamin B6 content, such as higher biomass and resistance to abiotic stress, suggest that increasing this essential micronutrient could be a valuable option to improve the nutritional quality and stress tolerance of crop plants. This review summarizes current achievements in vitamin B6 biofortification and considers strategies for increasing vitamin B6 levels in crop plants for human health and nutrition.

5.
Plant Mol Biol ; 79(4-5): 509-19, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22644441

ABSTRACT

Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization, which can enrich the complexity of transcriptomes and proteomes. In this study, the first exonization event was detected when the modified rice EPSPS marker gene was inserted with the Ac transposon 5' end, which provided a splice donor site to yield abundant novel transcripts. To assess the contribution of splice donor and acceptor sites of transposon sequences, we inserted a Ds element into each intron of the EPSPS marker gene. This process yielded 14 constructs, with the Ds transposon inserted in the forward and reverse direction in each of the 7 introns of the EPSPS marker gene. The constructs were transformed into tobacco plants, and novel transcripts were identified by RT-PCR with specific primers. Exonization of Ds in EPSPS was biased towards providing splice donor sites of the inserted Ds sequence. Additionally, when the Ds inserted in reverse direction, a continuous splice donor consensus region was determined by offering 4 donor sites in the same intron. Information on these exonization events may help enhance gene divergence and functional genomic studies.


Subject(s)
DNA Transposable Elements/genetics , Nicotiana/genetics , Alternative Splicing , Base Sequence , Consensus Sequence , DNA, Plant/genetics , Exons , Introns , Molecular Sequence Data , Nonsense Mediated mRNA Decay , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , RNA Splice Sites , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...