Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612104

ABSTRACT

The separation of photogenerated electron-hole pairs is crucial for the construction of high-performance and wide-band responsive photodetectors. The type-I heterojunction as a photodetector is seldomly studied due to its limited separation of the carriers and narrow optical response. In this work, we demonstrated that the high performance of type-I heterojunction as a broadband photodetector can be obtained by rational design of the band alignment and proper modulation from external electric field. The heterojunction device is fabricated by vertical stacking of non-layered MnS and WSe2 flakes. Its type-I band structure is confirmed by the first-principles calculations. The MnS/WSe2 heterojunction presents a wide optical detecting range spanning from 365 nm to 1550 nm. It exhibits the characteristics of bidirectional transportation, a current on/off ratio over 103, and an excellent photoresponsivity of 108 A W-1 in the visible range. Furthermore, the response time of the device is 19 ms (rise time) and 10 ms (fall time), which is much faster than that of its constituents MnS and WSe2. The facilitation of carrier accumulation caused by the interfacial band bending is thought to be critical to the photoresponse performance of the heterojunction. In addition, the device can operate in self-powered mode, indicating a photovoltaic effect.

2.
ACS Biomater Sci Eng ; 8(2): 540-550, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35107009

ABSTRACT

Photothermal therapy (PTT) working in the second near-infrared (NIR-II) region has aroused a huge interest due to its potential application in terms of clinical cancer treatment. However, owing to the lack of photothermal nanoagents with high photothermal conversion efficiency, NIR-II-driven PTT still suffers from poor efficiency and subsequent cancer recurrence. In this work, we show a new and highly efficient preparation approach for NIR-II photothermal nanoagents and tailor ultrathin layered double hydroxide (LDH)-supported Ag@Ag2O core-shell nanoparticles (Ag@Ag2O/LDHs-U), vastly improving NIR-II photothermal performance. A combination study (high-resolution transmission electron microscopy (HRTEM), extended X-ray absorption fine structure spectroscopy (EXAFS), and X-ray photoelectron spectroscopy (XPS)) verifies that ultrafine Ag@Ag2O core-shell nanoparticles (∼3.8 nm) are highly dispersed and firmly immobilized within ultrathin LDH nanosheets, and their Ag2O shell possesses abundant vacancy-type defects. These unique Ag@Ag2O/LDHs-U display an impressive photothermal conversion efficiency as high as 76.9% at 1064 nm. Such an excellent photothermal performance is likely attributed to the enhanced localized surface plasmon resonance (LSPR) coupling effect between Ag and Ag2O and the reduced band gap caused by vacancy-type defects in the Ag2O shell. Meanwhile, Ag@Ag2O/LDHs-U also show prominent photothermal stability, due to the unique supported core-shell nanostructure. Moreover, both in vitro and in vivo studies further confirm that Ag@Ag2O/LDHs-U possess good biocompatible properties and outstanding PTT therapeutic efficacy in the NIR-II region. This research shows a new strategy in the rational design and preparation of an efficient photothermal agent, which is helpful to achieve more accurate and effective cancer theranostics.


Subject(s)
Nanoparticles , Neoplasms , Humans , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Photothermal Therapy , Theranostic Nanomedicine/methods
3.
ACS Appl Mater Interfaces ; 13(15): 17920-17930, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33827214

ABSTRACT

For the design and optimization of near-infrared photothermal nanohybrids, tailoring the energy gap of nanohybrids plays a crucial role in attaining a satisfactory photothermal therapeutic efficacy for cancer and remains a challenge. Herein, we report an electron donor-acceptor effect-induced organic/inorganic nanohybrid with a low energy gap (denoted as ICG/Ag/LDH) by the in situ deposition of Ag nanoparticles onto the CoAl-LDH surface, followed by the coupling of ICG. A combination study verifies that the supported Ag nanoparticles as the electron donor (D) push electrons into the conjugated system of ICG by the electronic interaction between ICG and Ag, while OH groups of LDHs as the electron acceptor (A) pull electrons from the conjugated system of ICG by hydrogen bonding (N···H-O). This induces the formation of the D-A conjugated π-system and has a strong influence on the π-conjugated system of ICG, thus leading to a prominent decrease toward the energy gap and correspondingly an ultra-long redshift (∼115 nm). The resulting ICG/Ag/LDHs show an enhanced photothermal conversion efficiency (∼45.5%) at 808 nm laser exposure, which is ∼1.6 times larger than that of ICG (∼28.4%). Such a high photothermal performance is attributed to the fact that ICG/Ag/LDHs possess a D-π-A hybrid structure and a resulting lower energy gap, thus effectively promoting nonradiative transitions and leading to enhancement of the photothermal effect. Both in vitro and in vivo results confirm the good biocompatible properties and capability of the ICG/Ag/LDHs for NIR-triggered cancer treatment. This research demonstrates a successful paradigm for the rational design and preparation of new nanohybrids through the modulation of electron donor-acceptor effect, which offers a new avenue to achieve efficient phototherapeutic agent for improving the cancer therapeutic outcomes.


Subject(s)
Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanomedicine/methods , Organic Chemicals/chemistry , Phototherapy/methods , Silver/chemistry , Electron Transport , Hydrogen Bonding , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...