Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(5): e2304910, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926960

ABSTRACT

The adaptive control of sunlight through photochromic smart windows could have a huge impact on the energy efficiency and daylight comfort in buildings. However, the fabrication of inorganic nanoparticle and polymer composite photochromic films with a high contrast ratio and high transparency/low haze remains a challenge. Here, a solution method is presented for the in situ growth of copper-doped tungsten trioxide nanoparticles in polymethyl methacrylate, which allows a low-cost preparation of photochromic films with a high luminous transparency (luminous transmittance Tlum = 91%) and scalability (30 × 350 cm2 ). High modulation of visible light (ΔTlum = 73%) and solar heat (modulation of solar transmittance ΔTsol = 73%, modulation of solar heat gain coefficient ΔSHGC = 0.5) of the film improves the indoor daylight comfort and energy efficiency. Simulation results show that low-e windows with the photochromic film applied can greatly enhance the energy efficiency and daylight comfort. This photochromic film presents an attractive strategy for achieving more energy-efficient buildings and carbon neutrality to combat global climate change.

2.
ACS Appl Mater Interfaces ; 15(20): 24880-24891, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37184365

ABSTRACT

The enhancement of the heat-dissipation property of polymer-based composites is of great practical interest in modern electronics. Recently, the construction of a three-dimensional (3D) thermal pathway network structure for composites has become an attractive way. However, for most reported high thermal conductive composites, excellent properties are achieved at a high filler loading and the building of a 3D network structure usually requires complex steps, which greatly restrict the large-scale preparation and application of high thermal conductive polymer-based materials. Herein, utilizing the framework-forming characteristic of polymerization-induced para-aramid nanofibers (PANF) and the high thermal conductivity of hexagonal boron nitride nanosheets (BNNS), a 3D-laminated PANF-supported BNNS aerogel was successfully prepared via a simple vacuum-assisted self-stacking method, which could be used as a thermal conductive skeleton for epoxy resin (EP). The obtained PANF-BNNS/EP nanocomposite exhibits a high thermal conductivity of 3.66 W m-1 K-1 at only 13.2 vol % BNNS loading. The effectiveness of the heat conduction path was proved by finite element analysis. The PANF-BNNS/EP nanocomposite shows outstanding practical thermal management capability, excellent thermal stability, low dielectric constant, and dielectric loss, making it a reliable material for electronic packaging applications. This work also offers a potential and promotable strategy for the easy manufacture of 3D anisotropic high-efficiency thermal conductive network structures.

3.
Phys Chem Chem Phys ; 24(47): 29186-29194, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36444952

ABSTRACT

The conventional fabrication methods (for example, melting and powder metallurgy) of bulk thermoelectric materials are time- and energy-consuming, which restrict their large-scale application. In this work, ultra-fast self-propagating synthesis under a high-gravity field was used to prepare SnTe bulks, which shortened the synthesis time from several days to a few seconds. The grain growth was suppressed and some small pores were reserved in the matrix during the ultra-fast solidification process. The increased grain boundaries and pores (nanoscale to micron scale) enhanced phonon scattering, which greatly decreased the lattice thermal conductivity. The obtained minimum lattice thermal conductivity is 0.81 W m-1 K-1, and the maximum zT value is 0.5 (873 K), which is comparable to the best reported results of the undoped SnTe alloy. The ultra-fast non-equilibrium synthesis technique opens up new possibilities to prepare high-efficiency bulk thermoelectric materials with reduced time and energy consumption.

4.
ACS Omega ; 7(41): 36786-36794, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278105

ABSTRACT

To enhance the infrared radiation efficiency and the heat transfer performance simultaneously, graphene (Gr) was synthesized in situ on hexagonal boron nitride (h-BN) to prepare Gr/h-BN composites by a scalable combustion synthesis in CO2 atmosphere using Mg as sacrificial solder. The synthesized Gr/h-BN composites were added in polydimethylsiloxane polymer to prepare composite coatings, which show an infrared emissivity greater than 0.95 and a through-plane thermal conductivity up to 2.584 W·m-1·K-1. When functioning on an Al heatsink, such a composite coating can reduce the temperature by as much as 21.7 °C. Meanwhile, the composite coating exhibits superior adhesion on the Al substrate. Therefore, Gr/h-BN composite coatings with noteworthy infrared radiation and thermal conductivity are expected to be a promising candidate for heat dissipation applications.

5.
ACS Appl Mater Interfaces ; 14(24): 28301-28309, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35695131

ABSTRACT

Photochromic or thermochromic liquid crystal (LC) smart windows have attracted wide attention due to their spontaneous transmittance modulation under different environments. There remains a challenge for the LC smart windows that can be modulated with light and temperature simultaneously owing to the difficulty in selecting photothermal molecules. Herein, we selected a photothermal molecule, isobutyl-substituted diimmonium borate (IDI), which shows excellent characteristics of a photothermal material used in smart windows, such as transparency in the visible light range with a slight brown color, good compatibility with the LC system, and excellent photothermal effect compared with common photothermal materials. Thus, a photothermal dual-driven smart window is developed by doping IDI into chiral LC mixtures, which can efficiently modulate the transmittance at different temperatures (or light intensities) by varying the phase state from the homeotropically oriented smectic phase (transparent) to the focal conic cholesteric phase (opaque). The transmittance is high (70%) when the ambient temperature is low and the light intensity is weak, allowing more sunlight to enter the room. The transmittance is low (20%) when the ambient temperature is high and the light intensity is strong, which prevents sunlight from entering the room. The proposed smart window will have a promising application in terms of energy saving and personalized privacy protection.

6.
Mater Horiz ; 9(8): 2207-2214, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35708167

ABSTRACT

Negative and zero thermal expansion (NTE and ZTE) materials are widely adopted to eliminate the harmful effect from the "heat expansion and cool contraction" effect and frequently embrace novel fundamental physicochemical mechanisms. To date, the manipulation of NTE and ZTE materials has mainly been realized by chemical component regulation. Here, we propose another method by making use of the anisotropy of thermal expansion in noncubic single crystals, with maximal tunability from the integration of linear NTE, ZTE and positive thermal expansion (PTE). We demonstrate this concept in borate optical crystals of AEB2O4 (AE = Ca or Sr) to make the light transmission temperature-independent by counterbalancing the thermal expansion and thermo-optics coefficient. We further reveal that such a unique thermal expansion behavior in AEB2O4 arises from the synergetic thermal excitation of bond stretching in ionic [AEO8] and rotation between covalent [BO3] groups. This work has significant implications for understanding the thermal excitation of lattice vibrations in crystals and promoting the functionalization of anomalous thermal expansion materials.

7.
Drug Deliv ; 29(1): 1631-1647, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35612368

ABSTRACT

Primary bone tumors especially, sarcomas affect adolescents the most because it originates from osteoblasts cells responsible for bone growth. Chemotherapy, surgery, and radiation therapy are the most often used clinical treatments. Regrettably, surgical resection frequently fails to entirely eradicate the tumor, which is the primary cause of metastasis and postoperative recurrence, leading to a high death rate. Additionally, bone tumors frequently penetrate significant regions of bone, rendering them incapable of self-repair, and impairing patients' quality of life. As a result, treating bone tumors and regenerating bone in the clinic is difficult. In recent decades, numerous sorts of alternative therapy approaches have been investigated due to a lack of approved treatments. Among the novel therapeutic approaches, hydrogel-based anticancer therapy has cleared the way for the development of new targeted techniques for treating bone cancer and bone regeneration. They include strategies such as co-delivery of several drug payloads, enhancing their biodistribution and transport capabilities, normalizing accumulation, and optimizing drug release profiles to decrease the limitations of current therapy. This review discusses current advances in functionalized hydrogels to develop a new technique for treating bone tumors by reducing postoperative tumor recurrence and promoting tissue repair.


Subject(s)
Bone Neoplasms , Hydrogels , Adolescent , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Humans , Motivation , Quality of Life , Tissue Distribution
8.
J Tissue Eng Regen Med ; 16(3): 227-243, 2022 03.
Article in English | MEDLINE | ID: mdl-34958714

ABSTRACT

Although bone is a self-healing organ and is able to repair and restore most fractures, large bone fractures, about 10%, are not repairable. Bone grafting, as a gold standard, and bone tissue engineering using biomaterials, growth factors, and stem cells have been developed to restore large bone defects. Since bone regeneration is a complex and multiple-step process and the majority of the human genome, about 98%, is composed of the non-protein-coding regions, non-coding RNAs (ncRNAs) play essential roles in bone regeneration. Recent studies demonstrated that long ncRNAs (lncRNAs) and circular RNAs (circRNAs), as members of ncRNAs, are widely involved in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA or circRNA/miRNA/mRNA regulatory network. The constructed network regulates the differentiation of stem cells into osteoblasts and their commitment to osteogenesis. This review will present the structure and biogenesis of lncRNAs and circRNAs, the mechanism of bone repair, and the bone tissue engineering in bone defects. Finally, we will discuss the role of lncRNAs and circRNAs in osteogenesis and bone fracture healing through constructing various lncRNA or circRNA/miRNA/mRNA networks and the involved pathways.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Bone Regeneration/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
9.
Inorg Chem ; 60(15): 10880-10884, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34288645

ABSTRACT

It is known that as the FeAs4 tetrahedron in the Fe-based superconductor is close to the regular tetrahedron, critical temperature (Tc) can be greatly increased. Recently, a Co-based superconductor of LaCoSi (4 K) with "111" structure was found. In this work, we improve the Tc of LaCoSi through structural regulation. Tc can be increased by the chemical substitution of Co by Fe, while the superconductivity is suppressed by the Ni substitution. The combined analysis of neutron and synchrotron X-ray powder diffractions reveals that the change of the Si-Co-Si bond angles of the CoSi4 tetrahedron is possibly responsible for the determination of superconducting properties. The Fe chemical substitution is favorable for the formation of the regular tetrahedron of CoSi4. The present new Co-based superconductor of LaCoSi provides a possible method to enhance the superconductivity performance of the Co-based superconductors via controlling Co-based tetrahedra similar to those well established in the Fe-based superconductors.

10.
Inorg Chem ; 60(9): 6157-6161, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33885292

ABSTRACT

It is known that few Co-based superconducting compounds have been found compared with their Fe- or Ni-based counterparts. In this study, we have found superconductivity of 4 K in the LaCoSi compound for the first time. The combined analysis of neutron and synchrotron X-ray powder diffractions reveals that LaCoSi exhibits an isostructure with the known Fe-based LiFeAs superconductor, which is the first "111" Co-based superconductor. First-principles calculation shows that LaCoSi presents a quasi-two-dimensional band structure that is also similar to that of LiFeAs. The small structural distortion may be more conducive to the emergence of superconductivity in the LaCoSi compound, which provides a direction for finding new Co-based superconducting compounds.

11.
ACS Appl Mater Interfaces ; 12(52): 58170-58178, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33337132

ABSTRACT

Carbon-based aerogels have drawn substantial attention for a wide scope of applications. However, the high intrinsic electrical conductivity limits their potential thermal management application in electronic packaging materials. Herein, a highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel (FGA) is developed through a hydrofluoric acid-assisted hydrothermal process. The macroscopic-assembled FGA constituting of tailored interconnected graphene networks with tunable fluorine coverage shows excellent elasticity and fatigue resistance for compression, despite a low density of 10.6 mg cm-3. Moreover, the aerogel is proved to be highly insulating, with the observed lowest electrical conductivity reaching 4 × 10-7 S cm-1. Meanwhile, the aerogel exhibits prominent heat dissipation performance in a typical cooling procedure, which can be used to fabricate thermoconductive polymer composites for electronic packaging.

12.
ACS Appl Mater Interfaces ; 12(51): 57228-57234, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33296168

ABSTRACT

Achieving high performances of ultra-low thermal expansion (ULTE) and high thermal conductivity remains challenging, due to the strong phonon/electron-lattice coupling in ULTE materials. In this study, the challenge has been solved via the construction of the core-shell structure in 0.5PbTiO3-0.5(Bi0.9La0.1)FeO3@Cu composites by the electroless plating, which can simultaneously combine the advantages of the negative thermal expansion material of 0.5PbTiO3-0.5(Bi0.9La0.1)FeO3 in controlling thermal expansion, and copper metal in high thermal conductivity. By changing the volume fraction of copper, the coefficient of thermal expansion of composites can be adjusted continuously from positive to negative. In particular, a ULTE (ΔT = 400 K) has been achieved in the composite of 35 vol % Cu. Intriguingly, a 3D thermal conductive network copper structure is formed for thermal conducting, which can double the thermal conductivity of the 35 vol % Cu composite from the methods by the traditional mixing (32 W·m-1·K-1) up to the core-shell structure (60 W·m-1·K-1). The present work not only provides a composite material with excellent comprehensive properties but also proposes a general chemical method to resolve the problem of low thermal conductivity in most ULTE materials.

13.
Curr Top Med Chem ; 20(30): 2801-2819, 2020.
Article in English | MEDLINE | ID: mdl-33076808

ABSTRACT

Nanotechnology and its allied modalities have brought revolution in tissue engineering and bone healing. The research on translating the findings of the basic and preclinical research into clinical practice is ongoing. Advances in the synthesis and design of nanomaterials along with advances in genomics and proteomics, and tissue engineering have opened a bright future for bone healing and orthopedic technology. Studies have shown promising outcomes in the design and fabrication of porous implant substrates that can be exploited as bone defect augmentation and drug-carrier devices. However, there are dozens of applications in orthopedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from tens 10s of nanometers to a few micrometers. Nanotechnology has made promising advances in the synthesis of scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. This study reviews the basic and translational sciences and clinical implications of the nanotechnology in tissue engineering and bone diseases. Recent advances in NPs assisted osteogenic agents, nanocomposites, and scaffolds for bone disorders are discussed.


Subject(s)
Biocompatible Materials/therapeutic use , Bone Diseases/drug therapy , Drug Delivery Systems , Nanomedicine , Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Humans , Tissue Engineering
14.
Sensors (Basel) ; 21(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383884

ABSTRACT

The present work describes the monitoring system of the real-time strain response on the curing process of epoxy resin from the initial point of curing to the end, and the change in strain during temperature changes. A simple mould was designed to embed the strain gauge, thermometer, and quartz standard sample into the epoxy resin, so that the strain and the temperature were simultaneously measured and recorded. A cryogenic-grade epoxy resin was tested and the Differential Scanning Calorimetry (DSC) was used to analyse the curing process. Based on the DSC results, three curing processes were adopted to investigate their influence on strain response as well as residual strain of the epoxy resin. Moreover, impact strength of the epoxy resin with various curing temperatures were tested and the results indicate that the curing plays a crucial role on the mechanical properties. The method will find cryogenic application of epoxy adhesives and epoxy resin based composites to monitor the strain during the curing process as well as the cryogenic service.

15.
ACS Appl Mater Interfaces ; 12(1): 1436-1443, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31818102

ABSTRACT

Thermally conductive polymeric composites are highly promising in current energy devices such as light-emitting diodes, integrated circuits, and solar cells to achieve appropriate thermal management. However, the introduction of traditional thermoconductive fillers into a polymer usually results in low thermal conductivity enhancement. Here, an ideal dielectric epoxy nanocomposite with ultrahigh thermal conductivity is successfully fabricated using three-dimensional interconnected boron nitride nanotube reinforced graphene oxide nanosheet (3D-BNNT-GONS) aerogels as fillers. The nanocomposite exhibits a nearly 20-fold increase in thermal conductivity with only 11.6 vol % loading fraction. Meanwhile, the nanocomposite possesses excellent insulation performance, including low dielectric constant, low dielectric loss, and high breakdown strength. A heating and cooling process reveals that the nanocomposite has a fast response of surface temperature, indicating high thermal management capability.

16.
Polymers (Basel) ; 11(8)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31409004

ABSTRACT

Thermally conductive but electrically insulating materials are highly desirable for thermal management applications in electrical encapsulation and future energy fields, for instance, superconducting magnet insulation in nuclear fusion systems. However, the traditional approaches usually suffer from inefficient and anisotropic enhancement of thermal conductivity or deterioration of electrical insulating property. In this study, using boron nitride sphere (BNS) agglomerated by boron nitride (BN) sheets as fillers, we fabricate a series of epoxy/BNS composites by a new approach, namely gravity-mix, and realize the controllable BNS loading fractions in the wide range of 5-40 wt%. The composites exhibited thermal conductivity of about 765% and enhancement at BNS loading of 40 wt%. The thermal conductivity up to 0.84 W·m-1·K-1 at 77 K and 1.66 W·m-1·K-1 at 298 K was observed in preservation of a higher dielectric constant and a lower dielectric loss, as expected, because boron nitride is a naturally dielectric material. It is worth noting that the thermal property was almost isotropous on account of the spherical structure of BNS in epoxy. Meanwhile, the reduction of the coefficient of thermal expansion (CTE) was largely reduced, by up to 42.5% at a temperature range of 77-298 K.

17.
Nano Lett ; 19(8): 5277-5286, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31331173

ABSTRACT

The cytotoxic reactive oxygen species (ROS) generated by photoactivated sensitizers have been well explored in tumor therapy for nearly half a century, which is known as photodynamic therapy (PDT). The poor light penetration depth severely hinders PDT as a primary or adjuvant therapy for clinical indication. Whereas microwaves (MWs) are advantageous for deep penetration depth, the MW energy is considerably lower than that required for the activation of any species to induce ROS generation. Herein we find that liquid metal (LM) supernanoparticles activated by MW irradiation can generate ROS, such as ·OH and ·O2. On this basis, we design dual-functional supernanoparticles by loading LMs and an MW heating sensitizer ionic liquid (IL) into mesoporous ZrO2 nanoparticles, which can be activated by MW as the sole energy source for dynamic and thermal therapy concomitantly. The microwave sensitizer opens the door to an entirely novel dynamic treatment for tumors.


Subject(s)
Hyperthermia, Induced/methods , Nanoparticles/therapeutic use , Neoplasms/therapy , Reactive Oxygen Species/metabolism , Zirconium/therapeutic use , Animals , Hep G2 Cells , Humans , Ionic Liquids/therapeutic use , Mice , Microwaves , Nanoparticles/ultrastructure , Neoplasms/metabolism
18.
Nanoscale ; 11(21): 10183-10189, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31112189

ABSTRACT

With extensive investigations involving liquid metals (LMs), Ga-based LMs have attracted increasing attention from biomedical researchers because of their good biocompatibility, ideal fluidity, and high thermal conductivity. LMs employed in cancer treatment suffer from high surface tension, thereby yielding unstable nanoparticles (NPs). Here, ZrO2 is coated onto LM NPs to form a stable core-shell nanostructure. In particular, LM NPs coated with ZrO2 and modified by PEG (LM@pZrO2 NPs) still maintain favorable flexibility, which is beneficial for cellular uptake. With regard to the photothermal properties of LM, LM@pZrO2 NPs rapidly warm up and emit the requisite amount of heat under NIR laser radiation. It is confirmed that LM@pZrO2 NPs are more effectively internalized by cells and are beneficial for tumor photothermal therapy. This research provides a coating strategy to fabricate a stable and flexible core-shell LM nanostructure, making it a promising vehicle for nanotheranostics.


Subject(s)
Coated Materials, Biocompatible , Gadolinium , Hyperthermia, Induced , Metal Nanoparticles , Neoplasms, Experimental , Photochemotherapy , Polyethylene Glycols , Animals , Gadolinium/chemistry , Gadolinium/pharmacology , Hep G2 Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Zirconium/chemistry , Zirconium/pharmacology
19.
Inorg Chem ; 58(9): 5380-5383, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30964273

ABSTRACT

Negative thermal expansion (NTE) is an intriguing physical phenomenon that can be used in the applications of thermal expansion adjustment of materials. In this study, we report a NTE compound of (Hf,Ti)Fe2, while both end members of HfFe2 and TiFe2 show positive thermal expansion. The results reveal that phase coexistence is detected in the whole NTE zone, in which one phase is ferromagnetic (FM), while the other is antiferromagnetic (AFM). With increasing temperature, the FM phase is gradually transformed to the AFM one. The NTE phenomenon occurs in the present (Hf,Ti)Fe2 because of the fact that the unit cell volume of the AFM phase is smaller than that of the FM phase, and the mass fraction of the AFM phase increases with increasing temperature. The construction of phase coexistence can be a method to achieve NTE materials in future studies.

20.
Front Chem ; 6: 252, 2018.
Article in English | MEDLINE | ID: mdl-30003077

ABSTRACT

Thermal expansion is a crucial factor for the performance of laser devices, since the induced thermal stress by laser irradiation would strongly affect the optical beam quality. For BaAlBO3F2 (BABF), a good non-linear optical (NLO) crystal, due to the highly anisotropic thermal expansion its practical applications are strongly affected by the "tearing" stress with the presence of local overheating area around the laser spot. Recently, the strategy to place the optical crystals in low-temperature environment to alleviate the influence of the thermal effect has been proposed. In order to understand the prospect of BABF for this application, in this work, we investigated its thermal expansion behavior below room temperature. The variable-temperature XRD showed that the ratio of thermal expansion coefficient between along c- and along a(b)- axis is high as 4.5:1 in BABF. The Raman spectrum combined with first-principles phonon analysis revealed that this high thermal expansion anisotropy mainly ascribe to progressive stimulation of the respective vibration phonon modes related with the thermal expansion along a(b)- and c-axis. The good NLO performance in BABF can be kept below room temperature. The work presented in this paper provides an in-depth sight into the thermal expansion behavior in BABF, which, we believe, would has significant implication to the manipulation in atomic scale on the thermal expansion of the materials adopted in strong-field optical facility.

SELECTION OF CITATIONS
SEARCH DETAIL
...