Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963121

ABSTRACT

Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.

2.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964640

ABSTRACT

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Subject(s)
Rosa , Rosa/genetics , Rosa/metabolism , Ascorbic Acid/metabolism , Genes, Plant , Chromosomes , Evolution, Molecular
3.
J Exp Bot ; 75(1): 123-136, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37724960

ABSTRACT

Lignin and cellulose are two essential elements of plant secondary cell walls that shape the mechanical characteristics of the culm to prevent lodging. However, how the regulation of the lignin and cellulose composition is combined to achieve optimal mechanical characteristics is unclear. Here, we show that increasing OsTCP19 expression in rice coordinately repressed lignin biosynthesis and promoted cellulose biosynthesis, resulting in enhanced lodging resistance. In contrast, repression of OsTCP19 coordinately promoted lignin biosynthesis and inhibited cellulose biosynthesis, leading to greater susceptibility to lodging. We found that OsTCP19 binds to the promoters of both MYB108 and MYB103L to increase their expression, with the former being responsible for repressing lignin biosynthesis and the latter for promoting cellulose biosynthesis. Moreover, up-regulation of OsTCP19 in fibers improved grain yield and lodging resistance. Thus, our results identify the OsTCP19-OsMYB108/OsMYB103L module as a key regulator of lignin and cellulose production in rice, and open up the possibility for precisely manipulating lignin-cellulose composition to improve culm mechanical properties for lodging resistance.


Subject(s)
Lignin , Oryza , Lignin/metabolism , Oryza/metabolism , Cellulose/metabolism , Carbohydrate Metabolism , Cell Wall/metabolism
4.
J Integr Plant Biol ; 66(3): 443-467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38032010

ABSTRACT

Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.


Subject(s)
Trees , Wood , Humans , Wood/genetics , Trees/genetics , Molecular Structure , Plant Breeding , Genetic Engineering
5.
J Exp Bot ; 75(5): 1407-1420, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37978883

ABSTRACT

Coordination of secondary cell wall deposition and cell expansion during plant growth is required for cell development, particularly in vascular tissues. Yet the fundamental coordination process has received little attention. We observed that the Arabidopsis endo-1,4-mannanase gene, AtMAN6, is involved in the formation of cell walls in vascular tissues. In the inflorescence stem, the man6 mutant had smaller vessel cells with thicker secondary cell walls and shorter fiber cells. Elongation growth was reduced in the root, and secondary cell wall deposition in vessel cells occurred early. Overexpression of AtMAN6 resulted in the inverse phenotypes of the man6 mutant. AtMAN6 was discovered on the plasma membrane and was specifically expressed in vessel cells during its early development. The AtMAN6 protein degraded galactoglucomannan to produce oligosaccharides, which caused secondary cell wall deposition in vessel and fiber cells to be suppressed. Transcriptome analysis revealed that the expression of genes involved in the regulation of secondary cell wall synthesis was changed in both man6 mutant and AtMAN6 overexpression plants. AtMAN6's C-terminal cysteine repeat motif (CCRM) was found to facilitate homodimerization and is required for its activity. According to the findings, the oligosaccharides produced by AtMAN6 hydrolysis may act as a signal to mediate this coordination between cell growth and secondary cell wall deposition.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mannans/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Oligosaccharides/metabolism , Gene Expression Regulation, Plant , Xylem/metabolism
6.
Mol Plant ; 17(1): 112-140, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38102833

ABSTRACT

Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.


Subject(s)
Lignin , Wood , Wood/genetics , Wood/metabolism , Lignin/metabolism , Ecosystem , Plants/metabolism , Cell Wall/metabolism , Trees/genetics
7.
Sci Data ; 10(1): 832, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38007506

ABSTRACT

Mahogany species (family Meliaceae) are highly valued for their aesthetic and durable wood. Despite their economic and ecological importance, genomic resources for mahogany species are limited, hindering genetic improvement and conservation efforts. Here we perform chromosome-scale genome assemblies of two commercially important mahogany species: Swietenia macrophylla and Khaya senegalensis. By combining 10X sequencing and Hi-C data, we assemble high-quality genomes of 274.49 Mb (S. macrophylla) and 406.50 Mb (K. senegalensis), with scaffold N50 lengths of 8.51 Mb and 7.85 Mb, respectively. A total of 99.38% and 98.05% of the assembled sequences are anchored to 28 pseudo-chromosomes in S. macrophylla and K. senegalensis, respectively. We predict 34,129 and 31,908 protein-coding genes in S. macrophylla and K. senegalensis, respectively, of which 97.44% and 98.49% are functionally annotated. The chromosome-scale genome assemblies of these mahogany species could serve as a vital genetic resource, especially in understanding the properties of non-model woody plants. These high-quality genomes could support the development of molecular markers for breeding programs, conservation efforts, and the sustainable management of these valuable forest resources.


Subject(s)
Genome, Plant , Meliaceae , Chromosomes , Meliaceae/genetics
8.
Plant Sci ; 337: 111890, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37813192

ABSTRACT

Lignin is a complex polymer that provides structural support and defense to plants. It is synthesized in the secondary cell walls of specialized cells. Through regulates its stability, LTF1 acts as a switch to control lignin biosynthesis in Populus, a dicot plant. However, how lignin biosynthesis is regulated in rice, a monocot plant, remains unclear. By employing genetic, cellular, and chemical approaches, we discovered that LTF1L1, a rice homolog of LTF1, regulates lignin biosynthesis through a distinct mechanism from Populus LTF1. Knockout of LTF1L1 increased lignin synthesis in the sclerenchyma cells of rice stems, while overexpression of LTF1L1 decreased it. LTF1L1 is phosphorylated by OsMPK6 at Ser169, which did not affect its stability but impaired its ability to repress the expression of lignin biosynthesis genes. This was supported by the non-phosphorylated mutant of LTF1L1 (LTF1L1S169A), which displayed a stronger repressive effect on lignin biosynthesis in both rice and Populus. Our findings reveal that LTF1L1 acts as a negative regulator of lignin biosynthesis via a distinct mechanism from that of LTF1 in Populus and highlight the evolutionary diversity in the regulation of lignin biosynthesis in plants.

9.
Sci Data ; 10(1): 512, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537171

ABSTRACT

Wood is the most important natural and endlessly renewable source of energy. Despite the ecological and economic importance of wood, many aspects of its formation have not yet been investigated. We performed chromosome-scale genome assemblies of three timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis) which exhibit different wood properties such as wood density, hardness, growth rate, and fiber cell wall thickness. The combination of 10X, stLFR, Hi-Fi sequencing and HiC data led us to assemble high-quality genomes evident by scaffold N50 length of 55.97 Mb (O. pyramidale), 22.37 Mb (M. ferrea) and 14.55 Mb (T. grandis) with >97% BUSCO completeness of the assemblies. A total of 35774, 24027, and 44813 protein-coding genes were identified in M. ferrea, T. grandis and O. pyramidale, respectively. The data generated in this study is anticipated to serve as a valuable genetic resource and will promote comparative genomic analyses, and it is of practical importance in gaining a further understanding of the wood properties in non-model woody species.


Subject(s)
Bombacaceae , Genome, Plant , Bombacaceae/genetics , Chromosomes , Trees/genetics , Wood/genetics
10.
Curr Biol ; 33(15): 3203-3214.e4, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37442138

ABSTRACT

The plant vascular system is an elaborate network of conducting and supporting tissues that extends throughout the plant body, and its structure and function must be orchestrated with different environmental conditions. Under high temperature, plants display thin and lodging stems that may lead to decreased yield and quality of crops. However, the molecular mechanism underlying high-temperature-mediated regulation of vascular development is not known. Here, we show that Arabidopsis plants overexpressing the basic-helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a central regulator of high-temperature signaling, display fewer vascular bundles (VBs) and decreased secondary cell wall (SCW) thickening, mimicking the lodging inflorescence stems of high-temperature-grown wild-type plants. Rising temperature and elevated PIF4 expression reduced the expression of MIR166 and, concomitantly, elevated the expression of the downstream class III homeodomain leucine-zipper (HD-ZIP III) family gene HB15. Consistently, knockdown of miR166 and overexpression of HB15 led to inhibition of vascular development and SCW formation, whereas the hb15 mutant displayed the opposite phenotype in response to high temperature. Moreover, in vitro and in vivo assays verified that PIF4 binds to the promoters of several MIR166 genes and represses their expression. Our study establishes a direct functional link between PIF4 and the miR166-HB15 module in modulating vascular development and SCW thickening and consequently stem-lodging susceptibility at elevated temperatures.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Phytochrome , Arabidopsis/metabolism , Temperature , Phytochrome/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Plant Commun ; 4(5): 100665, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37491818

ABSTRACT

Primary and secondary growth of the tree stem are responsible for corresponding increases in trunk height and diameter. However, our molecular understanding of the biological processes that underlie these two types of growth is incomplete. In this study, we used single-cell RNA sequencing and spatial transcriptome sequencing to reveal the transcriptional landscapes of primary and secondary growth tissues in the Populus stem. Comparison between the cell atlas and differentiation trajectory of primary and secondary growth revealed different regulatory networks involved in cell differentiation from cambium to xylem precursors and phloem precursors. These regulatory networks may be controlled by auxin accumulation and distribution. Analysis of cell differentiation trajectories suggested that vessel and fiber development followed a sequential pattern of progressive transcriptional regulation. This research provides new insights into the processes of cell identity and differentiation that occur throughout primary and secondary growth of tree stems, increasing our understanding of the cellular differentiation dynamics that occur during stem growth in trees.


Subject(s)
Cambium , Transcriptome , Cambium/genetics , Trees/genetics , Gene Expression Profiling , Cell Differentiation/genetics , Sequence Analysis, RNA
12.
Physiol Plant ; 175(3): e13943, 2023.
Article in English | MEDLINE | ID: mdl-37260122

ABSTRACT

MYB transcriptional regulators belong to one of the most significant transcription factors families in plants, among which R2R3-MYB transcription factors are involved in plant growth and development, hormone signal transduction, and stress response. Two R2R3-MYB transcription factors, FLP and its paralogous AtMYB88, redundantly regulate the symmetrical division of guard mother cells (GMCs), and abiotic stress response in Arabidopsis thaliana. Only one orthologue gene of FLP was identified in pea (Pisum sativum FLP; PsFLP). In this study, we explored the gene function of PsFLP by virus-induced gene silencing (VIGS) technology. The phenotypic analysis displayed that the silencing of PsFLP expression led to the abnormal development of stomata and the emergence of multiple guard cells tightly united. In addition, the abnormal stomata of flp could be fully rescued by PsFLP driven by the FLP promoter. In conclusion, the results showed that PsFLP plays a conservative negative role in regulating the symmetric division of GMC during stomatal development. Based on real-time quantitative PCR, the relative expressions of AAO3, NCED3, and SnRK2.3 significantly increased in the flp pFLP::PsFLP plants compared to mutant, indicating that PsFLP might be involved in drought stress response. Thus, PsFLP regulates the genes related to cell cycle division during the stomatal development of peas and participates in response to drought stress. The study provides a basis for further research on its function and application in leguminous crop breeding.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Pisum sativum/genetics , Pisum sativum/metabolism , Gene Expression Regulation, Plant/genetics , Arabidopsis/metabolism , Stem Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Plant Biotechnol J ; 21(8): 1659-1670, 2023 08.
Article in English | MEDLINE | ID: mdl-37205779

ABSTRACT

In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.


Subject(s)
Infertility, Male , Oryza , Male , Humans , Temperature , Ligands , Plant Breeding , Fertility , Oryza/genetics , Plant Infertility/genetics
14.
Front Microbiol ; 14: 1066805, 2023.
Article in English | MEDLINE | ID: mdl-36910200

ABSTRACT

Background: Pinus yunnanensis is a major silvicultural species in Southwest China. Currently, large areas of twisted-trunk Pinus yunnanensis stands severely restrict its productivity. Different categories of rhizosphere microbes evolve alongside plants and environments and play an important role in the growth and ecological fitness of their host plant. However, the diversity and structure of the rhizosphere microbial communities between P. yunnanensis with two different trunk types-straight and twisted-remain unclear. Methods: We collected the rhizosphere soil of 5 trees with the straight and 5 trees with the twisted trunk type in each of three sites in Yunnan province. We assessed and compared the diversity and structure of the rhizosphere microbial communities between P. yunnanensis with two different trunk types by Illumina sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions. Results: The available phosphorus in soil differed significantly between P. yunnanensis with straight and twisted trunks. Available potassium had a significant effect on fungi. Chloroflexi dominated the rhizosphere soils of the straight trunk type, while Proteobacteria was predominant in the rhizosphere soils of the twisted trunk type. Trunk types significantly explained 6.79% of the variance in bacterial communities. Conclusion: This study revealed the composition and diversity of bacterial and fungal groups in the rhizosphere soil of P. yunnanensis with straight and twisted trunk types, providing proper microbial information for different plant phenotypes.

15.
New Phytol ; 238(5): 1972-1985, 2023 06.
Article in English | MEDLINE | ID: mdl-36922397

ABSTRACT

In trees, secondary xylem development is essential for the growth of perennial stem increments. Many signals regulate the process of development, but our knowledge of the molecular components involved in signal transduction is still limited. In this study, we identified Attenuation of Secondary Xylem (ASX) knockouts by screening genome-editing knockouts of xylem-expressed receptor-like kinases (RLKs) in Populus. The ASX role in secondary xylem development in Populus was discovered using biochemical, cellular, and genomic analyses. The ASX knockout plants had abnormal secondary stem growth but had little effect on shoot apical primary growth. ASX and SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)2/4 were co-precipitated in developing xylem. Through their interaction, ASX is phosphorylated by SERK. Transcriptome analysis of developing xylem revealed that ASX deficiency inhibited the transcriptional activity of genes involved in xylem differentiation and secondary cell wall formation. By forming a complex, ASX and SERK may function as a signaling module for signal transduction required in the regulation of secondary xylem development in trees. This study shows that ASX, which encodes a RLKs, is required for secondary xylem development and sheds light on regulatory signals found in tree stem secondary growth.


Subject(s)
Populus , Plant Proteins/genetics , Plant Proteins/metabolism , Xylem/physiology , Gene Expression Profiling , Cell Differentiation/genetics , Gene Expression Regulation, Plant
16.
Plant J ; 112(3): 664-676, 2022 11.
Article in English | MEDLINE | ID: mdl-36069460

ABSTRACT

Vacuolar H+ -ATPase (V-ATPase) has diverse functions related to plant development and growth. It creates the turgor pressure that drives cell growth by generating the energy needed for the active transport of solutes across the tonoplast. V-ATPase is a large protein complex made up of multiheteromeric subunits, some of which have unknown functions. In this study, a forward genetics-based strategy was employed to identify the vab3 mutant, which displayed resistance to isoxaben, a cellulose synthase inhibitor that could induce excessive transverse cell expansion. Map-based cloning and genetic complementary assays demonstrated that V-ATPase B subunit 3 (VAB3) is associated with the observed insensitivity of the mutant to isoxaben. Analysis of the vab3 mutant revealed defective ionic homeostasis and hypersensitivity to salt stress. Treatment with a V-ATPase inhibitor exacerbated ionic tolerance and cell elongation defects in the vab3 mutant. Notably, exogenous low-dose Ca2+ or Na+ could partially restore isoxaben resistance of the vab3 mutant, suggesting a relationship between VAB3-regulated cell growth and ion homeostasis. Taken together, the results of this study suggest that the V-ATPase subunit VAB3 is required for cell growth and ion homeostasis in Arabidopsis.


Subject(s)
Arabidopsis , Vacuolar Proton-Translocating ATPases , Arabidopsis/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Benzamides/pharmacology , Benzamides/metabolism , Homeostasis
17.
Plant Commun ; 3(6): 100416, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35927944

ABSTRACT

Secondary cell walls (SCWs) in stem cells provide mechanical strength and structural support for growth. SCW thickening varies under different light conditions. Our previous study revealed that blue light enhances SCW thickening through the redundant function of MYC2 and MYC4 directed by CRYPTOCHROME1 (CRY1) signaling in fiber cells of the Arabidopsis inflorescence stem. In this study, we find that the Arabidopsis PHYTOCHROME B mutant phyB displays thinner SCWs in stem fibers, but thicker SCWs are deposited in the PHYTOCHROME INTERACTING FACTOR (PIF) quadruple mutant pif1pif3pif4pif5 (pifq). The shaded light condition with a low ratio of red to far-red light inhibits stem SCW thickening. PIF4 interacts with MYC2 and MYC4 to affect their localization in nuclei, and this interaction results in inhibition of the MYCs' transactivation activity on the NST1 promoter. Genetic evidence shows that regulation of SCW thickening by PIFs is dependent on MYC2/MYC4 function. Together, the results of this study reveal a PHYB-PIF4-MYC2/MYC4 module that inhibits SCW thickening in fiber cells of the Arabidopsis stem.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Phytochrome B/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Phytochrome/genetics , Cell Wall , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Trans-Activators/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Transcription Factors/genetics
18.
Sci Adv ; 8(10): eabg8723, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35263144

ABSTRACT

Global crop production is greatly reduced by vascular diseases. These diseases include bacterial blight of rice and crucifer black rot caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas campestris pv. campestris (Xcc). The molecular mechanisms that activate vascular defense against such pathogens remains underexplored. Here, we show that an Arabidopsis MAPK phosphatase 1 (MKP1) mutant has increased host susceptibility to the adapted pathogen Xcc and is compromised in nonhost resistance to the rice pathogen Xoo. MKP1 regulates MAPK-mediated phosphorylation of the transcription factor MYB4 that negatively regulates vascular lignification through inhibiting lignin biosynthesis. Induction of lignin biosynthesis is, therefore, an important part of vascular-specific immunity. The role of MKP-MAPK-MYB signaling in lignin biosynthesis and vascular resistance to Xoo is conserved in rice, indicating that these factors form a tissue-specific defense regulatory network. Our study likely reveals a major vascular immune mechanism that underlies tissue-specific disease resistance against bacterial pathogens in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Xanthomonas , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Lignin/metabolism , Oryza/genetics , Oryza/metabolism , Phosphorylation , Plant Diseases/genetics , Plant Diseases/microbiology , Protein Tyrosine Phosphatases/metabolism , Repressor Proteins/metabolism , Xanthomonas/metabolism
19.
Plant Commun ; 2(5): 100134, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34746756

ABSTRACT

In trees, stem secondary growth depends on vascular cambium proliferation activity and subsequent cell differentiation, in which an auxin concentration gradient across the cambium area plays a crucial role in regulating the process. However, the underlying molecular mechanism for the establishment of auxin concentration is not fully understood. In this study, we identified two function-unknown MADS-box genes, VCM1 and VCM2, which are expressed specifically in the vascular cambium and modulate the subcellular homeostasis of auxin. Simultaneous knockdown of both VCM1 and VCM2 enhanced vascular cambium proliferation activity and subsequent xylem differentiation. Overexpression of VCM1 suppressed vascular cambium activity and wood formation by regulating PIN5 expression, which tuned the soluble auxin concentration in the vascular cambium area. This study reveals the role of VCM1 and VCM2 in regulating the proliferation activity of the vascular cambium and secondary growth by modulating the subcellular auxin homeostasis in Populus.


Subject(s)
Cambium/growth & development , Indoleacetic Acids/metabolism , MADS Domain Proteins/genetics , Plant Proteins/genetics , Populus/genetics , Homeostasis , MADS Domain Proteins/metabolism , Plant Proteins/metabolism , Populus/growth & development , Populus/metabolism
20.
Plant Cell Physiol ; 62(12): 1867-1873, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34698856

ABSTRACT

Plants need to develop thickened cell walls with appropriate localization through precise regulation during the process of growth and development in order to support their body weight and to build long distance transportation systems. Wall thickening is achieved through a multitude of regulatory networks in various tissues under changeable environments. In this mini-review, we summarize current understanding of the regulatory pathways and mechanisms involved in cell wall thickening. Regulation of cell wall thickening is not only mechanistically essential to understand the plant structure accretion but also has applicable significance to plant cell wall biomass utilization.


Subject(s)
Cell Wall/metabolism , Plants/metabolism , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...