Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 17(6): 920-934, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38720461

ABSTRACT

Leaf angle (LA) is a crucial factor that affects planting density and yield in maize. However, the regulatory mechanisms underlying LA formation remain largely unknown. In this study, we performed a comparative histological analysis of the ligular region across various maize inbred lines and revealed that LA is significantly influenced by a two-step regulatory process involving initial cell elongation followed by subsequent lignification in the ligular adaxial sclerenchyma cells (SCs). Subsequently, we performed both bulk and single-nucleus RNA sequencing, generated a comprehensive transcriptomic atlas of the ligular region, and identified numerous genes enriched in the hypodermal cells that may influence their specialization into SCs. Furthermore, we functionally characterized two genes encoding atypical basic-helix-loop-helix (bHLH) transcription factors, bHLH30 and its homolog bHLH155, which are highly expressed in the elongated adaxial cells. Genetic analyses revealed that bHLH30 and bHLH155 positively regulate LA expansion, and molecular experiments demonstrated their ability to activate the transcription of genes involved in cell elongation and lignification of SCs. These findings highlight the specialized functions of ligular adaxial SCs in LA regulation by restricting further extension of ligular cells and enhancing mechanical strength. The transcriptomic atlas of the ligular region at single-nucleus resolution not only deepens our understanding of LA regulation but also enables identification of numerous potential targets for optimizing plant architecture in modern maize breeding.


Subject(s)
Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Zea mays/cytology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Transcriptome/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics
2.
Int J Biol Macromol ; 231: 123387, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36693603

ABSTRACT

Rice (Oryza sativa L.) is an important grain crop worldwide, and drought has become an important factor restricting rice yield. As a unique rice germplasm in Hainan (China), Shanlan upland rice has rich genetic diversity and certain advantage for breeding water-saving and drought-resistance rice. 48 varieties, including 41 Shanlan upland rice, 3 upland rice, and 4 irrigated rice varieties was cultivated in soil pots. The drought resistance was assessed at the seedling stage using the stress coefficients of seven indicators, as the D value calculating from five principal components to rank the varieties. Five cultivars with strong, medium, and low resistance, were selected for transcriptome sequencing. The results of the GSEA analysis showed that free amino acid content increased through the redistribution of energy in Shanlan upland rice to cope with drought stress. In addition, we found that Os03g0623100 was significantly up-regulated under drought stress conditions in varieties with high drought resistance, as compared with low resistance cultivars. The Os03g0623100 was predicted to interact with LEA protein in the STRING database, which may contribute to maintaining the energy metabolisms to under stress conditions. This study provides a view of Shanlan upland rice as a drought-resistant germplasm resource, and a deeper understanding of the molecular mechanism of crop drought resistance.


Subject(s)
Oryza , Oryza/metabolism , Drought Resistance , Transcriptome , Plant Breeding , Phenotype , Droughts
3.
BMC Genomics ; 23(1): 336, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35490237

ABSTRACT

BACKGROUND: Drought has become the major abiotic stress that causes losses in rice yields and consequently is one of the main environmental factors threatening food security. Long non-coding RNA (lncRNA) is known to play an important role in plant response to drought stress, while the mechanisms of competing endogenous RNA (ceRNA) in drought resistance in upland rice have been rarely reported. RESULTS: In our study, a total of 191 lncRNAs, 2115 mRNAs and 32 miRNAs (microRNAs) were found by strand-specific sequencing and small RNA sequencing to be differentially expressed in drought-stressed rice. Functional analysis of results indicate that they play important roles in hormone signal transduction, chlorophyll synthesis, protein synthesis and other pathways. Construction of a ceRNA network revealed that MSTRG.28732.3 may interact with miR171 in the chlorophyll biosynthesis pathway and affect the ability of plants to withstand drought stress by regulating Os02g0662700, Os02g0663100 and Os06g0105350. The accuracy of the regulatory network was verified by qRT-PCR. CONCLUSION: Our results provide a theoretical basis for future studies on the potential function of lncRNA in plant drought resistance, and they provide new genetic resources for drought-resistant rice breeding.


Subject(s)
MicroRNAs , Oryza , RNA, Long Noncoding , Chlorophyll , Droughts , MicroRNAs/genetics , Oryza/metabolism , Plant Breeding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...