Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Inflamm Res ; 17: 3499-3513, 2024.
Article in English | MEDLINE | ID: mdl-38828053

ABSTRACT

Purpose: The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, crucial in infectious and inflammatory diseases by regulating IL-1ß, presents a target for disease management. Neisseria gonorrhoeae causes gonorrhea in over 87 million people annually, with previous research revealing NLRP3 inflammasome activation in infected macrophages. No natural products have been reported to counteract this activation. Exploring honokiol, a phenolic compound from Chinese herbal medicine, we investigated its impact on NLRP3 inflammasome activation in N. gonorrhoeae-infected macrophages. Methods: Honokiol's impact on the protein expression of pro-inflammatory mediators was analyzed using ELISA and Western blotting. The generation of intracellular H2O2 and mitochondrial reactive oxygen species (ROS) was detected through specific fluorescent probes (CM-H2DCFDA and MitoSOX, respectively) and analyzed by flow cytometry. Mitochondrial membrane integrity was assessed using specific fluorescent probes (MitoTracker and DiOC2(3)) and analyzed by flow cytometry. Additionally, the effect of honokiol on the viability of N. gonorrhoeae was examined through an in vitro colony-forming units assay. Results: Honokiol effectively inhibits caspase-1, caspase-11 and GSDMD activation and reduces the extracellular release of IL-1ß, NLRP3, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in N. gonorrhoeae-infected macrophages. Detailed investigations have demonstrated that honokiol lowers the production of H2O2 and the phosphorylation of ERK1/2 in N. gonorrhoeae-infected macrophages. Importantly, the phosphorylation of JNK1/2 and p38 and the activation of NF-κB remain unaffected. Moreover, honokiol reduces the N. gonorrhoeae-mediated generation of reactive oxygen species within the mitochondria, preserving their integrity. Additionally, honokiol suppresses the expression of the pro-inflammatory mediator IL-6 and inducible nitric oxide synthase induced by N. gonorrhoeae independently of NLRP3. Impressively, honokiol exhibits in vitro anti-gonococcal activity against N. gonorrhoeae. Conclusion: Honokiol inhibits the NLRP3 inflammasome in N. gonorrhoeae-infected macrophages and holds great promise for further development as an active ingredient in the prevention and treatment of symptoms associated with gonorrhea.

2.
J Inflamm (Lond) ; 21(1): 18, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840105

ABSTRACT

BACKGROUND: Worldwide, more than 125 million people are infected with Shigella each year and develop shigellosis. In our previous study, we provided evidence that Shigella sonnei infection triggers activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome in macrophages. NLRP3 inflammasome is responsible for regulating the release of the proinflammatory cytokines interleukin (IL)-1ß and IL-18 through the protease caspase-1. Researchers and biotech companies have shown great interest in developing inhibitors of the NLRP3 inflammasome, recognizing it as a promising therapeutic target for several diseases. The leaves of Cinnamomum osmophloeum kaneh, an indigenous tree species in Taiwan, are rich in cinnamaldehyde (CA), a compound present in significant amounts. Our aim is to investigate how CA affects the activation of the NLRP3 inflammasome in S. sonnei-infected macrophages. METHODS: Macrophages were infected with S. sonnei, with or without CA. ELISA and Western blotting were employed to detect protein expression or phosphorylation levels. Flow cytometry was utilized to assess H2O2 production and mitochondrial damage. Fluorescent microscopy was used to detect cathepsin B activity and mitochondrial ROS production. Additionally, colony-forming units were employed to measure macrophage phagocytosis and bactericidal activity. RESULTS: CA inhibited the NLRP3 inflammasome in S. sonnei-infected macrophages by suppressing caspase-1 activation and reducing IL-1ß and IL-18 expression. CA also inhibited pyroptosis by decreasing caspase-11 and Gasdermin D activation. Mechanistically, CA reduced lysosomal damage and enhanced autophagy, while leaving mitochondrial damage, mitogen-activated protein kinase phosphorylation, and NF-κB activation unaffected. Furthermore, CA significantly boosted phagocytosis and the bactericidal activity of macrophages against S. sonnei, while reducing secretion of IL-6 and tumour necrosis factor following infection. CONCLUSION: CA shows promise as a nutraceutical for mitigating S. sonnei infection by diminishing inflammation and enhancing phagocytosis and the bactericidal activity of macrophages against S. sonnei.

3.
J Physiol Investig ; 67(3): 139-152, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38902958

ABSTRACT

Inflammatory bowel disease (IBD) comprises a group of idiopathic intestinal disorders, including ulcerative colitis and Crohn's disease, significantly impacting the quality of life for affected individuals. The effective management of these conditions remains a persistent challenge. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a complex molecular structure, regulates the production of pro-inflammatory cytokines such as interleukin-1ß. Abnormal activation of the NLRP3 inflammasome plays a pivotal role in the development of IBD, making it a compelling target for therapeutic intervention. Our research revealed that cinnamaldehyde (CA), a major bioactive compound found in the leaves of Cinnamomum osmophloeum kaneh, demonstrated a remarkable ability to alleviate colitis induced by dextran sulfate sodium (DSS) in a mouse model. This effect was attributed to CA's ability to downregulate the activation of the NLRP3 inflammasome and reduce the expression of pro-inflammatory mediators in the colon. In the mechanism study, we observed that CA inhibited the NLRP3 inflammasome in macrophages, at least partially, by enhancing the autophagic response, without reducing mitochondrial damage. These findings collectively suggest that CA holds significant potential as a therapeutic agent for enhancing the management of IBD, offering a promising avenue for further research and development.


Subject(s)
Acrolein , Cinnamomum , Colitis , Dextran Sulfate , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Plant Leaves , Animals , Acrolein/analogs & derivatives , Acrolein/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Mice , Colitis/chemically induced , Colitis/drug therapy , Cinnamomum/chemistry , Inflammasomes/drug effects , Inflammasomes/metabolism , Plant Leaves/chemistry , Male
4.
Inflammation ; 47(2): 696-717, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38319541

ABSTRACT

The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1ß and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1ß, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1ß and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Colitis , Dextran Sulfate , Disease Models, Animal , Inflammasomes , Macrophages , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Valsartan , Animals , Mice , Aminobutyrates/pharmacology , Aminobutyrates/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Biphenyl Compounds/pharmacology , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/toxicity , Drug Combinations , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Valsartan/pharmacology , Male
5.
J Inflamm Res ; 16: 4867-4884, 2023.
Article in English | MEDLINE | ID: mdl-37908202

ABSTRACT

Purpose: Coronavirus disease 2019 (COVID-19) poses a global health challenge with widespread transmission. Growing concerns about vaccine side effects, diminishing efficacy, and religious-based hesitancy highlight the need for alternative pharmacological approaches. Our study investigates the impact of the ethanol extract of Antrodia cinnamomea (AC), a native medicinal fungus from Taiwan, on COVID-19 in both in vitro and in vivo contexts. Methods: We measured the mRNA and protein levels of angiotensin-converting enzyme-2 (ACE2) in human lung cells using real-time reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Additionally, we determined the enzymatic activity of ACE2 using the fluorogenic peptide substrate Mca-YVADAPK(Dnp)-OH. To assess the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we used SARS-CoV-2 pseudovirus infections in human embryonic kidney 293T cells expressing ACE2 to measure infection rates. Furthermore, we evaluated the in vivo efficacy of AC in mitigating COVID-19 by conducting experiments on hamsters infected with the Delta variant of SARS-CoV-2. Results: AC effectively decreased ACE2 mRNA and protein levels, a critical host receptor for the SARS-CoV-2 spike protein, in human lung cells. It also prevented the spike protein from binding to human lung cells. Dehydrosulphurenic acid, an isolate from AC, directly inhibited ACE2 protease activity with an inhibitory constant of 1.53 µM. In vitro experiments showed that both AC and dehydrosulphurenic acid significantly reduced the infection rate of SARS-CoV-2 pseudovirus. In hamsters infected with the Delta variant of SARS-CoV-2, oral administration of AC reduced body weight loss and improved lung injury. Notably, AC also inhibited IL-1ß expression in both macrophages and the lung tissues of SARS-CoV-2-infected hamsters. Conclusion: AC shows potential as a nutraceutical for reducing the risk of SARS-CoV-2 infection by disrupting the interaction between ACE2 and the SARS-CoV-2 spike protein, and for preventing COVID-19-associated lung inflammation.

6.
J Inflamm Res ; 16: 5235-5248, 2023.
Article in English | MEDLINE | ID: mdl-38026238

ABSTRACT

Purpose: Intervertebral disc (IVD) degeneration, associated with aging, may cause low back pain and disability, with obesity as a significant risk factor. In a prior study, we found a positive correlation between IVD degeneration and levels of matrix metalloproteinase-1 (MMP-1) and leptin. Yet, the interaction between MMP-1 and leptin in IVD degeneration is unclear. Our research seeks to explore leptin's influence on MMP-1 expression and the underlying mechanisms in human intervertebral disc cartilage endplate-derived stem cells, specifically SV40 cells. Methods: The mRNA and protein expression in leptin-stimulated SV40 cells were assessed using RT-real-time PCR and Western blotting or ELISA, respectively. We examined leptin-mediated RhoA activation through a GTP-bound RhoA pull-down assay. Furthermore, the phosphorylation levels of mitogen-activated protein kinases and AKT in leptin-stimulated SV40 cells were analyzed using Western blotting. The activation of NF-κB by leptin was investigated by assessing phosphorylation of IKKα/ß, IκBα, and NF-κB p65, along with the nuclear translocation of NF-κB p65. To understand the underlying mechanism behind leptin-mediated MMP-1 expression, we employed specific inhibitors. Results: Leptin triggered the mRNA and protein expression of MMP-1 in SV40 cells. In-depth mechanistic investigations uncovered that leptin heightened RhoA activity, promoted ERK1/2 phosphorylation, and increased NF-κB activity. However, leptin did not induce phosphorylation of JNK1/2, p38, or AKT. When we inhibited RhoA, ERK1/2, and NF-κB, it resulted in a decrease in MMP-1 expression. Conversely, inhibition of reactive oxygen species and NADPH oxidase did not yield the same outcome. Additionally, inhibiting RhoA or ERK1/2 led to a reduction in leptin-induced NF-κB activation. Moreover, inhibiting RhoA also decreased leptin-mediated ERK1/2 phosphorylation. Conclusion: These results indicated that leptin induced MMP-1 expression in SV40 cells through the RhoA/ERK1/2/NF-κB axis. This study provided the pathogenic role of leptin and suggested the potential therapeutic target for IVD degeneration.

7.
Front Vet Sci ; 10: 1133752, 2023.
Article in English | MEDLINE | ID: mdl-37275613

ABSTRACT

Eggshell translucency severely affects external egg quality, and variations in the eggshell or eggshell membrane are considered the structural basis of the trait. Research has shown that 1.85% additional mixed fatty acids in the diet would greatly decrease the occurrence of eggshell translucency. Only a few studies have examined the phenotypic regularity of eggshell translucency with the increasing age of hens. Therefore, two strains, 1139 Rhode Island Red-White (RIR-White) and 836 Dwarf Layer-White (DWL-White), were used, and from each strain, 30 hens each that consecutively laid translucent or opaque eggs at 67 wks of age were selected. Subsequently, eggshell translucency, internal quality and external quality of eggs, and total cholesterol, albumin, calcium binding protein and other physiological indicators related to lipid, lipoprotein, and calcium metabolisms at the 75th, 79th, and 83rd wks of age in the late phase of the laying cycle were determined. Results: (1) In terms of flocks, for both strains, the translucency scores of the translucent groups were significantly higher than those of the opaque groups (P < 0.05); in terms of individuals, 81.1% RIR-White and 82.8% DWL-White hens consecutively laid eggs of the same or similar translucency, indicating the stability of the trait with increasing hen age; (2) In RIR-White, the eggshell strength of the translucent group at 75 weeks was significantly higher than that of the opaque group (P < 0.05); in DWL-White, the eggshell membrane thickness of the translucent group at the 75th and 83rd weeks was significantly lower than that of the opaque group (P < 0.05); (3) Compared to the opaque groups, the translucent groups had lower total cholesterol content in both RIR-White and DWL-White, lower albumin content in DWL-White at the 79th weeks (P < 0.05), and higher calcium-binding protein (CALB1) in RIR-White at the 83rd weeks (P < 0.05). In summary, this study illustrates the stability of eggshell translucency in late-phase laying hens and provides a reference of physiological indicators for exploring the formation of translucent eggs.

8.
Front Nutr ; 9: 871325, 2022.
Article in English | MEDLINE | ID: mdl-35967819

ABSTRACT

The intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome controls caspase-1 activity and the maturation and release of the cytokines interleukin (IL)-1ß and IL-18. The NLRP3 inflammasome has attracted the attention of the pharmaceutical industry because it promotes the pathogenesis of many diseases, making it a promising target for drug development. Litsea cubeba (Lour.) is a plant traditionally used as a seasoning in Taiwan and in other Asian countries. In this study, we investigated the inhibitory activity of the leaves of L. cubeba against the NLRP3 inflammasome. We found that the ethanol extract of L. cubeba leaves (MLE) inhibited the NLRP3 inflammasome in macrophages by reducing caspase-1 activation and IL-1ß secretion. MLE reduced pyroptosis in macrophages and inhibited the release of NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC). In a mechanistic study, MLE reduced mitochondrial reactive oxygen species (ROS) production and preserved mitochondrial integrity, which led to reduced mitochondrial DNA release into the cytosol. MLE did not reduce the expression levels of NLRP3, IL-1ß precursor or TNF-α in lipopolysaccharide (LPS)-activated macrophages. These results indicated that MLE inhibited the NLRP3 inflammasome by suppressing the activation signals of the NLRP3 inflammasome but not by reducing the priming signal induced by LPS. In addition, oral administration of MLE (20-80 mg/kg) ameliorated dextran sulfate sodium (DSS)-induced colitis in a mouse model. Notably, mice that received MLE (1 and 2 g/kg) daily for 7 days did not exhibit visible side effects. Gas chromatography-mass spectrometry (GC-MS) analysis found that α-Terpinyl acetate (27.2%) and 1,8-Cineole (17.7%) were the major compounds in MLE. These results indicated that L. cubeba leaves have the potential to be a nutraceutical for preventing and improving NLRP3 inflammasome-related diseases.

9.
Front Immunol ; 13: 870627, 2022.
Article in English | MEDLINE | ID: mdl-35669789

ABSTRACT

Aberrant activation of the NLRP3 inflammasome promotes the pathogenesis of many inflammatory diseases. The development of the NLRP3 inflammasome inhibitors from existing drugs for new therapeutic purposes is becoming more important. Candesartan is an angiotensin II receptor antagonist widely used as a blood pressure-lowering drug; however, the inhibitory potential of candesartan on the NLRP3 inflammasome has not yet been investigated. We demonstrated that candesartan significantly inhibited the NLRP3 inflammasome and pyroptosis in macrophages. Mechanistic analysis revealed that candesartan inhibited the expression of NLRP3 and proIL-1ß by suppressing NF-κB activation and reducing the phosphorylation of ERK1/2 and JNK1/2. Candesartan reduced mitochondrial damage and inhibited the NLRP3 inflammasome assembly by suppressing NLRP3 binding to PKR, NEK7 and ASC. In addition, candesartan inhibited IL-1ß secretion partially through autophagy induction. Furthermore, oral administration of candesartan reduced peritoneal neutrophil influx, NLRP3 and ASC expression in peritoneal cells, and lavage fluid concentrations of active caspase-1, IL-1ß, IL-6 and MCP-1 in uric acid crystal-injected mice. These results indicated that candesartan has board anti-inflammatory effects and has the potential to be repositioned to ameliorate inflammatory diseases or NLRP3-associated complications.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Angiotensin Receptor Antagonists , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Benzimidazoles , Biphenyl Compounds , Drug Repositioning , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tetrazoles
10.
Regul Toxicol Pharmacol ; 128: 105097, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34902532

ABSTRACT

In forensic toxicology, a marker of street heroin use is urgent especially in the absence of urinary 6-monoacetylmorphine. ATM4G, the Glucuronide of Acetylated product of Thebaine compound 4 Metabolite (ATM4), arising from byproducts of street heroin synthesis has been considered as a useful marker in some European studies. However, whether ATM4G is a universal marker particularly in Southeast Asia due to 'street' heroin with high purity, it's still unclear. To investigate putative markers for different regions, ATM4G and other metabolites including the Acetylated product of Thebaine compound 3 Metabolite (ATM3) and thebaol, also originated from thebaine were detected in 552 urine samples from heroin users in Taiwan. Results were compared with that from samples collected in the UK and Germany. Only a sulfo-conjugate of ATM4, ATM4S, was detected in 28 Taiwanese users using a sensitive MS3 method whilst out of 351 samples from the UK and Germany, ATM4G was present in 91. Thebaol-glucuronide was first time detected in 118. No markers were detected in urine following herbal medicine use or poppy seed ingestion. The presence of ATM4S/ATM4G might be affected by ethnicities and heroin supplied in regions. Thebaol-glucuronide is another putative marker with ATM4G and ATM4S for street heroin use.


Subject(s)
Forensic Toxicology/methods , Glucuronides/urine , Heroin/metabolism , Substance Abuse Detection/methods , Asia, Southeastern , Europe , Gas Chromatography-Mass Spectrometry/methods , Heroin/urine , Humans , Morphine Derivatives/urine , Thebaine/urine
11.
Cells ; 10(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944043

ABSTRACT

Polysaccharides from marine organisms produce an important regulatory effect on the mammalian immune system. In this study, the immunomodulatory properties of a polysaccharide that was isolated from the coral Pseudopterogorgia americana (PPA) were investigated. PPA increased the expression levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), but not inducible nitric oxide synthase and nitric oxide, in macrophages. A mechanistic study revealed that PPA activated macrophages through the toll-like receptor-4 and induced the generation of reactive oxygen species (ROS), increased the phosphorylation levels of protein kinase C (PKC)-α, PKC-δ and mitogen-activated protein kinases (MAPK), and activated NF-κB. The inhibition of ROS and knockdown of PKC-α reduced PPA-mediated TNF-α and IL-6 expression; however, the knockdown of PKC-δ significantly increased PPA-mediated TNF-α expression. In addition, the inhibition of c-Jun N-terminal kinase-1/2 and NF-κB reduced PPA-mediated TNF-α, IL-6 and COX-2 expression. Furthermore, the inhibition of ROS, MAPK and PKC-α/δ reduced PPA-mediated NF-κB activation, indicating that ROS, MAPK and PKC-α/δ function as upstream signals of NF-κB. Finally, PPA treatment decreased the phagocytosis activity of macrophages and reduced cytokine expression in bacteria-infected macrophages. Taken together, our current findings suggest that PPA can potentially play a role in the development of immune modulators in the future.


Subject(s)
Anthozoa/chemistry , Immunologic Factors/pharmacology , Macrophages/immunology , Polysaccharides/pharmacology , Animals , Cyclooxygenase 2/metabolism , Cytokines/biosynthesis , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/microbiology , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Phagocytosis/drug effects , Polysaccharides/chemistry , Protein Kinase C-alpha/metabolism , Protein Kinase C-delta/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , THP-1 Cells , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Chin J Physiol ; 64(5): 232-243, 2021.
Article in English | MEDLINE | ID: mdl-34708715

ABSTRACT

Macrophages are essential for host defense as they control foreign pathogens and induce acquired immune responses. Activated macrophages secrete pro-inflammatory reactive substances causing local cell and tissue inflammatory response, which helps an organism resist the invasion of foreign pathogens. Excessive or chronic inflammation can cause several diseases. Previous studies have reported that vinegar treatment decreases the levels of several inflammatory cytokines and biomarkers, including mitogen-activated protein kinases, cyclooxygenase-2, inducible nitric oxide synthase (iNOS), and nitric oxide (NO). However, the benefits of wood vinegar produced from Griffith's ash (Fraxinus formosana Hayata) in reducing inflammation have not been investigated yet. Thus, assuming that wood vinegar exerts anti-inflammatory effects in macrophages, in this study, we investigated the potential anti-inflammatory effects of the wood vinegar from Griffith's ash using a lipopolysaccharide (LPS)-induced inflammatory response model in RAW264.7 macrophages. We showed that the wood vinegar inhibited the production of iNOS, NO, and interleukin 6. In addition, we found that the wood vinegar reduced the phosphorylation levels of p38 and protein kinase C-α/δ in the LPS-stimulated RAW264.7 macrophages. Based on these results, we suggest that the produced wood vinegar can reduce inflammation in LPS-activated macrophages.


Subject(s)
Acetic Acid , Anti-Inflammatory Agents , Macrophages/drug effects , Acetic Acid/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2 , Fraxinus , Inflammation/drug therapy , Inflammation Mediators , Lipopolysaccharides , Methanol , Mice , NF-kappa B/metabolism , Nitric Oxide , Nitric Oxide Synthase Type II , RAW 264.7 Cells
14.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352689

ABSTRACT

Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan, and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide, and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study, we prepared ginsenoside M1 (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol), a major deglycosylated metabolite of ginsenoside, through the biotransformation of Panax notoginseng leaves by the fungus SP-LSL-002. We investigated the anti-OSCC activity and associated mechanisms of ginsenoside M1 in vitro and in vivo. We demonstrated that ginsenoside M1 dose-dependently inhibited the viability of human OSCC SAS and OEC-M1 cells. To gain further insight into the mode of action of ginsenoside M1, we demonstrated that ginsenoside M1 increased the expression levels of Bak, Bad, and p53 and induced apoptotic DNA breaks, G1 phase arrest, PI/Annexin V double-positive staining, and caspase-3/9 activation. In addition, we demonstrated that ginsenoside M1 dose-dependently inhibited the colony formation and migration ability of SAS and OEC-M1 cells and reduced the expression of metastasis-related protein vimentin. Furthermore, oral administration or subcutaneous injection of ginsenoside M1 significantly reduced tumor growth in SAS xenograft mice. These results indicate that ginsenoside M1 can be translated into a potential therapeutic against OSCC.


Subject(s)
Apoptosis , Cell Movement , Ginsenosides/pharmacology , Mouth Neoplasms/drug therapy , Animals , Cell Proliferation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Int J Biol Macromol ; 165(Pt A): 495-505, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32991903

ABSTRACT

Glucuronoxylomannan (AAPS) from the edible wood ear mushroom Auricularia auricula-judae has been demonstrated to exhibit immunostimulatory properties through its binding to TLR4. However, the mechanisms of immune modulation by AAPS in mammalian cells remains unclear. In the present study, we demonstrated that AAPS induced immunostimulatory effects were regulated by reactive oxygen species, mitogen-activated protein kinases, protein kinase C-α and NF-κB. AAPS remarkably increased the phagocytosis and bactericidal activity of macrophages. In lipopolysaccharide-activated macrophages, AAPS induced endotoxin tolerance like effect characterized by the downregulation of nitric oxide, interleukin-6 and TNF-α via the downregulation of NF-κB activation. Our findings provide firm scientific evidences for the immunoenhancing properties of wood ear mushroom, and the potential of AAPS to be strong candidates for the development of new carbohydrate-based nutraceutical supplements in the management of immunity related disorders in the future.


Subject(s)
Auricularia/chemistry , Lipopolysaccharides/toxicity , Macrophages/immunology , Phagocytosis/drug effects , Polysaccharides/pharmacology , Animals , Drug Tolerance , Mice , Polysaccharides/chemistry , RAW 264.7 Cells
16.
BMC Complement Med Ther ; 20(1): 200, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600338

ABSTRACT

BACKGROUND: Eucalyptus essential oils have been used in traditional medicine for centuries. It was reported that Eucalyptus leaves possess antioxidant and antimicrobial effects. Here, we investigated the anti-inflammatory activity of the essential oils extracted from the leaves of four different Eucalyptus species in RAW264.7 macrophages. METHODS: Lipopolysaccharide (LPS)-activated RAW264.7 macrophages were used to evaluate the anti-inflammatory activity of the leaf essential oils of Eucalyptus. The cell survival was quantified by an Alamar Blue assay. Nitric oxide (NO) production was assessed by Griess reaction. TNF-α and IL-6 production were measured by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-κB (NF-κB) transcriptional activity was measured by NF-κB reporter assay. Intracellular protein expression levels were determined by Western blot. The expression levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and NF-κB pathway were measured by western blot in LPS-activated RAW 264.7 macrophage. RESULTS: The essential oils extracted from Eucalyptus citriodora leaf exert the best NO inhibitory activity in LPS-activated RAW264.7 macrophages. The essential oils were fractionated into fractions A-H, and fraction F has been demonstrated to inhibit the expression levels of TNF-α, IL-6, NO, iNOS and COX-2 in LPS-activated RAW264.7 macrophages. Mechanistic analysis revealed that fraction F reduced the phosphorylation levels of ERK1/2, p38, PKC-α, PKC-ε and PKC-δ, and inhibited the NF-κB transcriptional activity. The chemical composition of Fraction F was determined by GC-MS. CONCLUSIONS: The discoveries made herein could help develop innovative nonsteroidal anti-inflammatory drugs with minimal side effects and strong efficacy. Clinical trials on these Eucalyptus leaf essential oils will help customize and optimize their therapeutic administration.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Eucalyptus , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Oils, Volatile/pharmacology , Animals , Lipopolysaccharides , Mice , Plant Leaves , RAW 264.7 Cells , Taiwan
17.
Front Immunol ; 11: 1115, 2020.
Article in English | MEDLINE | ID: mdl-32582195

ABSTRACT

Shigella is one of the leading bacterial causes of diarrhea worldwide, affecting more than 165 million people annually. Among the serotypes of Shigella, Shigella sonnei is physiologically unique and endemic in human immunodeficiency virus-infected men who have sex with men. The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, a protein complex composed of NLRP3, apoptosis-associated speck-like protein, and caspase-1, recognizes, and responds to pathogen infection and diverse sterile host-derived or environmental danger signals to induce IL-1ß and IL-18 production. Although the Shigella flexneri-mediated activation of the NLRP3 inflammasome has been reported, the effect of S. sonnei on NLRP3 inflammasome activation remains unclear. We found that S. sonnei induced IL-1ß production through NLRP3-dependent pathways in lipopolysaccharide-primed macrophages. A mechanistic study revealed that S. sonnei induced IL-1ß production through P2X7 receptor-mediated potassium efflux, reactive oxygen species generation, lysosomal acidification, and mitochondrial damage. In addition, the phagocytosis of viable S. sonnei was important for IL-1ß production. Furthermore, we demonstrated that NLRP3 negatively regulated phagocytosis and the bactericidal activity of macrophages against S. sonnei. These findings provide mechanistic insight into the activation of the NLRP3 inflammasome by S. sonnei in macrophages.


Subject(s)
Dysentery, Bacillary/immunology , Inflammasomes/immunology , Interleukin-1beta/biosynthesis , Macrophages/immunology , Macrophages/parasitology , Animals , Humans , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Shigella sonnei/immunology
18.
Org Lett ; 22(7): 2569-2573, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32202806

ABSTRACT

The synthesis of a library of bacterial phosphoglycolipid, PGL-1, is described. Key features of the synthesis include regioselective esterification of the primary alcohol of the diacylglycerol moiety and an H-phosphonate method to install the phosphate in PGL-1 in comparison with earlier reported procedures. A representative set of PGL-1 analogues was prepared and evaluated for their biological activities. Results showed that the immunological activity of PGL-1 is dependent on the chain lengths of the fatty acids.


Subject(s)
Glycolipids/pharmacology , Gram-Negative Bacteria/chemistry , Immunologic Factors/pharmacology , Organophosphates/pharmacology , Animals , Dose-Response Relationship, Drug , Glycolipids/chemical synthesis , Glycolipids/chemistry , Immunologic Factors/chemical synthesis , Immunologic Factors/chemistry , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Structure , Organophosphates/chemical synthesis , Organophosphates/chemistry , Stereoisomerism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis
19.
Cells ; 9(2)2020 01 23.
Article in English | MEDLINE | ID: mdl-31979265

ABSTRACT

Gouty arthritis results from the generation of uric acid crystals within the joints. These uric acid crystals activate the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, which is involved in chronic inflammatory diseases, including gouty arthritis. This study identified the polyenylpyrrole derivative 4-hydroxy auxarconjugatin B (4-HAB), a novel autophagy inducer, which attenuated uric acid crystals-mediated activation of the NLRP3 inflammasome in vitro and in vivo. 4-HAB dose-dependently reduced the release of interleukin (IL)-1ß, IL-18, active caspase-1 and apoptosis-associated speck-like protein (ASC) in uric acid crystals-activated macrophages. In a mechanistic study, 4-HAB was shown to inhibit uric acid crystals-induced mitochondrial damage, lysosomal rupture and ASC oligomerization. Additionally, 4-HAB inhibited the NLRP3 inflammasome through Sirt1-dependent autophagy induction. Furthermore, the anti-inflammatory properties of 4-HAB were confirmed in a mouse model of uric acid crystals-mediated peritonitis by the reduced levels of neutrophil influx, IL-1ß, active caspase-1, IL-6 and MCP-1 in lavage fluids. In conclusion, 4-HAB attenuates gouty inflammation, in part by attenuating activation of the NLRP3 inflammasome through the Sirt1/autophagy induction pathway.


Subject(s)
Arthritis, Gouty/pathology , Autophagy/drug effects , Inflammasomes/metabolism , Inflammation/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrroles/pharmacology , Animals , Arthritis, Gouty/complications , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Disease Models, Animal , Humans , Inflammation/complications , Lipopolysaccharides , Lysosomes/drug effects , Lysosomes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/pathology , Models, Biological , Organelle Biogenesis , Protein Multimerization/drug effects , Pyrroles/chemistry , Sirtuin 1/metabolism
20.
Front Immunol ; 11: 607564, 2020.
Article in English | MEDLINE | ID: mdl-33424855

ABSTRACT

Conjugated polyenes are a class of widely occurring natural products with various biological functions. We previously identified 4-hydroxy auxarconjugatin B (4-HAB) as anti-inflammatory agent with an IC50 of ~20 µM. In this study, we synthesized a new anti-inflammatory 4-HAB analogue, F240B, which has an IC50 of less than 1 µM. F240B dose-dependently induced autophagy by increasing autophagic flux, LC3 speck formation and acidic vesicular organelle formation. F240B inhibited NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome activation through autophagy induction. In a mechanistic study, F240B inhibited interleukin (IL)-1ß (IL-1ß) precursor expression, promoted degradation of NLRP3 and IL-1ß, and reduced mitochondrial membrane integrity loss in an autophagy-dependent manner. Additionally, F240B inhibited apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation without affecting the interaction between NLRP3 and ASC or NIMA-related kinase 7 (NEK7) and double-stranded RNA-dependent kinase (PKR). Furthermore, F240B exerted in vivo anti-inflammatory activity by reducing the intraperitoneal influx of neutrophils and the levels of IL-1ß, active caspase-1, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in lavage fluids in a mouse model of uric acid crystal-induced peritonitis. In conclusion, F240B attenuated the NLRP3 inflammasome through autophagy induction and can be developed as an anti-inflammatory agent in the future.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autophagy/drug effects , Inflammasomes/metabolism , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Peritonitis/prevention & control , Animals , Anti-Inflammatory Agents/chemical synthesis , Autophagy-Related Proteins/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Peritonitis/chemically induced , Peritonitis/metabolism , Peritonitis/pathology , Protein Stability , RAW 264.7 Cells , Signal Transduction , THP-1 Cells , Uric Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...