Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(18): 10179-10194, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38685503

ABSTRACT

During the transportation and storage of food, foodborne spoilage caused by bacterial and biofilm infection is prone to occur, leading to issues such as short shelf life, economic loss, and sensory quality instability. Therefore, the development of novel and efficient antibacterial agents capable of efficiently inhibiting bacteria throughout various stages of food processing, transportation, and storage is strongly recommended by researchers. The emergence of nanozymes is considered to be an effective candidate for inhibiting foodborne bacteria agents in the food industry. As potent antibacterial agents, nanozymes have the advantages of low cost, high stability, strong broad-spectrum antibacterial ability, and biocompatibility. Herein, we aim to summarize the classification status of various nanozymes. Furthermore, the general catalytic bacteriostatic mechanism of nanozymes against intracellular bacteria, planktonic bacteria, and biofilm activities are highlighted, mainly concerning the destruction of cell walls and/or membranes, reactive oxygen species regulation, HOBr/Cl generation, damage of intracellular components, and so forth. In particular, the review focuses on the pivotal role of nanozymes as antibacterial agents and delivery vehicles in the fields of food preservation applications. We look forward to the future prospects, especially in the field of food preservation, to promote broader applications based on antimicrobial nanozymes.


Subject(s)
Anti-Bacterial Agents , Bacteria , Food Preservation , Nanostructures , Food Preservation/methods , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Humans , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Food Microbiology , Biofilms/drug effects
2.
Int J Biol Macromol ; 258(Pt 2): 129098, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161020

ABSTRACT

Bacterial infection often leads to failed wound healing, causing one-third of death cases globally. However, antibacterial nanomaterials and natural enzymes face limitations including low antibacterial efficiency, lack of catalytic performance, low safety, and instability. Therefore, a new Fe/N-doped chitosan-chelated carbon dot-based nanozyme CS@Fe-N CDs was developed, which showed multiple advantages such as highly efficient antibacterial activity, excellent peroxidase-like activity, high stability, and high biocompatibility, shortening the wound healing time. The ultra-small (6.14 ± 3.38 nm) CS@Fe-N CDs nanozyme accelerated the H2O2 to ·OH conversion, exhibiting excellent antibacterial performance against Staphylococcus aureus. The antibacterial activity was increased by over 2000-fold after catalysis. The CS@Fe-N CDs nanozyme also displayed outstanding peroxidase activity (Vmax/Km = 1.77 × 10-6/s), 8.8-fold higher than horseradish peroxidase. Additionally, the CS@Fe-N CDs nanozyme exhibited high stability at broad pH values (pH 1-12) and temperature ranges (20-90 °C). In vitro evaluation of cell toxicity proved that the CS@Fe-N CDs nanozyme had negligible cytotoxicity. In vivo, wound healing experiments demonstrated that the CS@Fe-N CDs could shorten the healing time of rat wounds by at least 4 days, and even had a better curative effect than penicillin. In conclusion, this therapeutic platform provides an effective antibacterial and biologically safe healing strategy for skin wounds.


Subject(s)
Chitosan , Rats , Animals , Chitosan/pharmacology , Carbon/pharmacology , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Wound Healing , Antioxidants/pharmacology , Peroxidases/pharmacology , Peroxidase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...