Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403141, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874056

ABSTRACT

Unique suspension solar evaporator is one of the effective measures to address the major bottleneck of the emerging interfacial evaporators, i.e., the accumulation of salts on the surface. Yet, it remains a considerable challenge to avoid substantial heat loss underwater. Herein, a suspension wood-based evaporator is proposed with a thermal convection structure that effectively balances the contradiction between salt-resistance ability and heat loss. Benefitting from the heat centralization due to thermal convection, such suspension evaporator exhibits an excellent steam generation rate, which increases from 1.23 to 1.63 kg m-2 h-1 compared to the conventional suspension evaporator. Simultaneously, the steam generation rate retention improves from 64.9% over 20 test cycles to nearly 100% compared to the interfacial evaporator. This work provides an effective pathway for exploring efficient and stable suspension evaporators, offering essential directions for the future development and application of solar-driven evaporation technologies.

2.
Adv Mater ; 35(26): e2300132, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36964945

ABSTRACT

Although recently developed hybrid zinc (Zn) batteries integrate the benefits of both alkaline Zn and Zn-air batteries, the kinetics of the electrocatalytic oxygen reaction and mass transfer of the electrolyte, which are limited by the mismatched and disordered multiphase reaction's interfacial transfer channels, considerably inhibit the performance of hybrid Zn batteries. In this work, novel, continuously oriented three-phase interfacial channels at the cathode derived from the natural structure of pine wood are developed to address these challenges. A pine wood chip is carbonized and asymmetrically loaded with a hydrophilic active material to achieve the creation of a wood-derived cathode that integrates the active material, current collector, and continuously oriented three-phase reaction interfacial channels, which allows the reaction dynamics to be accelerated. Consequently, the assembled quasi-solid-state hybrid battery performs an extra charge-discharge process beyond that performed by a typical nickel (Ni)-Zn battery, resulting in a wide operating voltage range of 0.6-2.0 V and a superior specific capacity of 656.5 mAh g-1 , in addition to an excellent energy density (644.7 Wh kg-1 ) and good durability. The ≈370% capacity improvement relative to the Ni-Zn battery alone makes the hybrid battery one of the best-performing alkaline Zn batteries.

3.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685300

ABSTRACT

The high-efficiency development and utilization of bamboo resources can greatly alleviate the current shortage of wood and promote the neutralization of CO2. However, the wide application of bamboo-derived products is largely limited by their unideal surface properties with adhesive as well as poor gluability. Herein, a facile strategy using the surfactant-induced reconfiguration of urea-formaldehyde (UF) resins was proposed to enhance the interface with bamboo and significantly improve its gluability. Specifically, through the coupling of a variety of surfactants, the viscosity and surface tension of the UF resins were properly regulated. Therefore, the resultant surfactant reconfigured UF resin showed much-improved wettability and spreading performance to the surface of both bamboo green and bamboo yellow. Specifically, the contact angle (CA) values of the bamboo green and bamboo yellow decreased from 79.6° to 30.5° and from 57.5° to 28.2°, respectively, with the corresponding resin spreading area increasing from 0.2 mm2 to 7.6 mm2 and from 0.1 mm2 to 5.6 mm2. Moreover, our reconfigured UF resin can reduce the amount of glue spread applied to bond the laminated commercial bamboo veneer products to 60 g m-2, while the products prepared by the initial UF resin are unable to meet the requirements of the test standard, suggesting that this facile method is an effective way to decrease the application of petroleum-based resins and production costs. More broadly, this surfactant reconfigured strategy can also be performed to regulate the wettability between UF resin and other materials (such as polypropylene board and tinplate), expanding the application fields of UF resin.

SELECTION OF CITATIONS
SEARCH DETAIL
...