Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 705: 135960, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31841917

ABSTRACT

The ultraviolet/peroxydisulfate (UV/PDS) system was used to degrade ofloxacin (OFL) in fresh water, synthetic marine aquaculture water and synthetic seawater. The comparison of the reaction degradation rate constants proved that the order of reaction rate was the following: synthetic seawater (0.77 min-1) > synthetic marine aquaculture water (0.74 min-1) > freshwater (0.30 min-1). Bromide (Br-) and bicarbonate (HCO3-) promote the degradation of OFL, whereas chloride (Cl-) inhibits the degradation. The piperazine ring of OFL was the main reactive group, and atoms N1, C6, C7 and N2 were identified as the reaction sites. Based on the intermediate and final products, the possible degradation pathways of OFL in the three kinds of water were proposed. Additionally, during the UV/PDS treatment of synthetic marine aquaculture water containing Cl- and Br-, the oxidation products of OFL showed a slight toxicity to Chlorella pyrenoidosa (C. pyrenoidosa) and Priacanthus tayenus (P. tayenus). The maximum growth inhibition rate of the products to C. pyrenoidosa was 9.72%. The products also caused liver cells of P. tayenus to be damaged and reduced the species richness and diversity of intestinal microorganism. Nevertheless, compared with the products degraded by traditional disinfection methods using NaClO, the biological toxicities were much lower. UV/PDS can be used for seawater as a new alternative disinfection method.


Subject(s)
Seawater/chemistry , Chlorella , Kinetics , Ofloxacin , Oxidation-Reduction , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification
2.
Environ Pollut ; 246: 717-727, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30616062

ABSTRACT

The antibacterial agent norfloxacin (NOR) and sodium hypochlorite (NaClO), which are both widely used in marine culture, react with each other to form the halogenated disinfection byproducts (X-DBPs). The effects of the water characteristics and iodide concentration on the reaction kinetics were investigated. The results showed that the reaction rate of NOR with NaClO increases from 0.0586 min-1 to 0.1075 min-1 when the iodide concentration was changed from 0 µg-1 to 50 µg-1. This demonstrated the enhancement of NOR oxidation in the presence of iodide ions. Four novel iodinated DBPs (I-DBPs) were identified in the marine culture water. Iodine substitutions occurred at the C3 and C8 positions of NOR. The formation mechanisms of X-DBPs in the marine culture water were proposed based on the intermediate and final products. NOR may undergo a ring-opening reaction, a de-carbonyl reaction and substitution to form intermediates and finally generate the X-DBPs. Furthermore, the predicted logKOW and logBCF values of the I-DBPs were higher than that of the Br-DBPs and Cl-DBPs. The AOX concentration in the synthetic water samples decreased in the following order: seawater (8.49 mg L-1) > marine culture water (4.05 mg L-1) > fresh water (1.89 mg L-1). The amount of AOX also increased with the increase in iodide concentration. These results indicated that the I-DBPs were more toxic than their brominated and chlorinated analogues.


Subject(s)
Aquatic Organisms/drug effects , Disinfectants/chemistry , Disinfection/methods , Iodides/chemistry , Norfloxacin/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Halogenation , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL