Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Cell Metab ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38971153

ABSTRACT

The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.

2.
Cancer Sci ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888048

ABSTRACT

Pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) have distinct clinical and biological behaviors. The microbial and metabolic differences in PHC and PBTC have not been studied. The pancreatic microbiota and metabolome of 15 PHC and 8 PBTC tissues and their matched nontumor tissues were characterized using 16S rRNA amplicon sequencing and untargeted metabolomics. At the genus level, Bradyrhizobium was increased while Corynebacterium and Ruminococcus were decreased in the PHC tissues (Head T) compared with the matched nontumor tissues (Head N) significantly. Shuttleworthia, Bacillus, and Bifidobacterium were significantly decreased in the PBTC tissues (Body/Tail T) compared with the matched nontumor tissues (Body/Tail N). Significantly, Ileibacterium was increased whereas Pseudoxanthomonas was decreased in Head T and Body/Tail T, and Lactobacillus was increased in Head T but decreased in Body/Tail T. A total of 102 discriminative metabolites were identified between Head T and Head N, which were scattered through linoleic acid metabolism and purine metabolism pathways. However, there were only four discriminative metabolites between Body/Tail T and Body/Tail N, which were related to glycerophospholipid metabolism and autophagy pathways. The differential metabolites in PHC and PBTC were commonly enriched in alpha-linolenic acid metabolism and choline metabolism in cancer pathways. Eubacterium decreased in Head T was positively correlated with decreased linoleic acid while negatively correlated with increased arachidyl carnitine and stearoylcarnitine. Bacillus decreased in Body/Tail T was negatively correlated with increased L-carnitine. These microbiota and metabolites deserve further investigations to reveal their roles in the pathogenesis of PHC and PBTC, providing clues for future treatments.

3.
J Thorac Dis ; 16(5): 3317-3324, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38883619

ABSTRACT

Background: Open thoracotomy has been the traditional surgical approach for patients with bronchogenic cysts (BCs). This study aimed to evaluate the safety and efficacy of video-assisted thoracoscopic surgery (VATS) compared to open surgery for the treatment of BCs in adults. Methods: This single-institution, retrospective cohort study included 117 consecutive adult patients who underwent VATS (group A) or open surgery (group B) for BC resection between February 2019 and January 2023. Data regarding clinical history, operation duration, length of hospital stay, 30-day mortality, and recurrence during follow-up were collected and analyzed. Results: Of the total cohort, 103 (88.0%) patients underwent VATS, while 14 (12.0%) patients underwent open surgery. Patients' age in group B were much older than group A (P=0.014), and no significant differences in other demographic and baseline clinical characteristics were observed between the groups. The VATS group had shorter median operation duration (96 vs. 149.5 min, P<0.001) and shorter mean length of hospital stay (5.0±5.5 vs. 8.6±4.0 days, P<0.001). One death occurred in the open surgery group. During a median follow-up of 34 (interquartile range, 20.8-42.5) months, no instances of BC recurrence were observed in either group. Conclusions: Compared to open surgery, VATS is also a safe and efficacious approach for treating BCs in adults. What's more, VATS offered shorter operative times and hospital stays. Considering the minimally invasive, VATS may be a better choice in most patients with bronchial cysts.

4.
Adv Biol (Weinh) ; : e2400064, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837746

ABSTRACT

A compelling correlation method linking microbial communities and host gene expression in tissues is currently absent. A novel pipeline is proposed, dubbed Transcriptome Analysis of Host-Microbiome Crosstalk (TAHMC), designed to concurrently restore both host gene expression and microbial quantification from bulk RNA-seq data. Employing this approach, it discerned associations between the tissue microbiome and host immunity in the context of Crohn's disease (CD). Further, machine learning is utilized to separately construct networks of associations among host mRNA, long non-coding RNA, and tissue microbes. Unique host genes and tissue microbes are extracted from these networks for potential utility in CD diagnosis. Experimental validation of the predicted host gene regulation by microbes from the association network is achieved through the co-culturing of Faecalibacterium prausnitzii with Caco-2 cells. Collectively, the TAHMC pipeline accurately recovers both host gene expression and microbial quantification from CD RNA-seq data, thereby illuminating potential causal links between shifts in microbial composition as well as diversity within CD mucosal tissues and aberrant host gene expression.

5.
Nanoscale ; 16(20): 9791-9801, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38700428

ABSTRACT

In recent years, the development of highly active and selective electrocatalysts for the electrochemical reduction of CO2 to produce CO and formic acid has aroused great interest, and can reduce environmental pollution and greenhouse gas emissions. Due to the high utilization of atoms, atom-dispersed catalysts are widely used in CO2 reduction reactions (CO2RRs). Compared with single-atom catalysts (SACs), multi-atom catalysts have more flexible active sites, unique electronic structures and synergistic interatomic interactions, which have great potential in improving the catalytic performance. In this study, we established a single-layer nitrogen-graphene-supported transition metal catalyst (TM-C2N1) based on density functional theory, facilitating the reduction of CO2 to CO or HCOOH with single-atom and multi-atomic catalysts. For the first time, the TM-C2N1 monolayer was systematically screened for its catalytic activity with ab initio molecular dynamics, density of states, and charge density, confirming the stability of the TM-C2N1 catalyst structure. Furthermore, the Gibbs free energy and electronic structure analysis of 3TM-C2N1 revealed excellent catalytic performance for CO and HCOOH in the CO2RR with a lower limiting potential. Importantly, this work highlights the moderate adsorption energy of the intermediate on 3TM-C2N1. It is particularly noteworthy that 3Mo-C2N1 exhibited the best catalytic performance for CO, with a limiting potential (UL) of -0.62 V, while 3Ti-C2N1 showed the best performance for HCOOH, with a corresponding UL of -0.18 V. Additionally, 3TM-C2N1 significantly inhibited competitive hydrogen evolution reactions. We emphasize the crucial role of the d-band center in determining products, as well as the activity and selectivity of triple-atom catalysts in the CO2RR. This theoretical research not only advances our understanding of multi-atomic catalysts, but also offers new avenues for promoting sustainable CO2 conversion.

6.
J Colloid Interface Sci ; 670: 204-214, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761573

ABSTRACT

Owing to highly theoretical capacity of 3579 mAh/g for lithium-ion storage at ambient temperature, silicon (Si) becomes a promising anode material of high-performance lithium-ion batteries (LIBs). However, the large volume change (∼300 %) during lithiation/delithiation and low conductivity of Si are challenging the commercial developments of LIBs with Si anode. Herein, a sandwich structure anode that Si nanoparticles sandwiched between carbon nanotube (CNT) and silicon carbide (SiC) has been successfully constructed by acetylene chemical vapor deposition and magnesiothermic reduction reaction technology. The SiC acts as a stiff layer to inhibit the volumetric stress from Si and the inner graphited CNT plays as the matrix to cushion the volumetric stress and as the conductor to transfer electrons. Moreover, the combination of SiC and CNT can relax the surface stress of carbonaceous interface to synergistically prevent the integrated structure from the degradation to avoid the solid electrolyte interface (SEI) reorganization. In addition, the SiC (111) surface has a strong ability to adsorb fluoroethylene carbonate molecule to further stabilize the SEI. Consequently, the CNT/SiNPs/SiC anode can stably supply the capacity of 1127.2 mAh/g at 0.5 A/g with a 95.6 % capacity retention rate after 200 cycles and an excellent rate capability of 745.5 mAh/g at 4.0 A/g and 85.5 % capacity retention rate after 1000 cycles. The present study could give a guide to develop the functional Si anode through designing a multi-interface with heterostructures.

7.
Pathol Res Pract ; 257: 155296, 2024 May.
Article in English | MEDLINE | ID: mdl-38615507

ABSTRACT

POU class 2 homeobox 3 (POU2F3)-positive small cell bladder carcinoma (SCBC) is an extremely rare entity, and its clinicopathologic features have not been fully described. Here, we investigated the clinicopathologic features of 4 cases of POU2F3-positive small cell bladder carcinoma (SCBC) and reviewed the literature. We collected 12 cases of SCBC from our departmental archives and detected the expression of POU2F3 by immunohistochemical (IHC) staining. Selected cases with or without POU2F3 expression were subjected to gene expression analysis between two different groups using DESeq2 software. We identified 4 POU2F3-positive SCBC patients, 2 males and 2 females, with a mean age of 77 years. Three patients had hematuria, and 1 patient had dysuria. Radiologic findings showed a bladder mass. Pathologic diagnosis showed that 3 cases were pure SCBC and 1 was mixed urothelial cancer (UC). Histopathologically, four POU2F3-positive SCBC tumors were composed of small round cells with sparse cytoplasm, the nuclei were salt-and-pepper-like or finely granular. Tumor cells showed characteristic cytoplasmic staining with punctate positive signals for cytokeratin. Syn and CD56 were diffusely positive in all the 4 patients. CgA was positive in only one patient. POU2F3-positive SCBC showed higher expression levels of POU2F3, HMGA2 and PLCG2 genes by RNA-Seq. Our data showed the specific clinicopathologic features of 4 rare POU2F3-positive SCBC cases, and the distinct molecular feature was observed between POU2F3-positive and negative SCBC in the limited number of cases.


Subject(s)
Biomarkers, Tumor , Carcinoma, Small Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Male , Female , Aged , Carcinoma, Small Cell/pathology , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Aged, 80 and over , Middle Aged , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/analysis
8.
BMC Pulm Med ; 24(1): 195, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649942

ABSTRACT

BACKGROUND: To present an unusual case of abnormal LCA expression and CD43 in SCLC and to review the reported literature to avoid potential diagnostic pitfalls. CASE PRESENTATION: A 73-year-old male patient suffered from persistent back pain for more than one month. MRI revealed a compression fracture of the L1-L5 vertebra. A CT scan revealed multiple nodules and masses at the left root of the neck, lung hilum and mediastinum, and multiple areas of bony destruction of the ribs. Histology of the tumor revealed that small and round cells were arranged in nests with areas of necrosis. The tumor cells were round to ovoid with scant cytoplasm and indistinct cell borders. The nuclear chromatin was finely granular, and the nucleoli were absent or inconspicuous. Immunohistochemically, the tumor cells were positive for cytokeratin, TTF-1, POU2F3, LCA, and CD43. CONCLUSION: This report highlights a potential diagnostic pitfall in the diagnosis of SCLC, urges pathologists to exercise caution in cases of LCA and CD43 positivity and illustrates the need for further immunohistochemical studies to avoid misdiagnosis.


Subject(s)
Leukosialin , Lung Neoplasms , Humans , Male , Aged , Leukosialin/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Tomography, X-Ray Computed , Immunohistochemistry , Biomarkers, Tumor/metabolism
9.
Luminescence ; 39(3): e4700, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506122

ABSTRACT

Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.2 cd m-2 , 0.14 cd A-1 , 0.06 lm W-1 , and 0.14%. respectively, proving that the three complexes have a certain of potential for OLEDs applications and are expected to expand the applications of iridium(III) complexes for OLEDs.


Subject(s)
Iridium , Ligands , Ions , Solubility , Solvents
10.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475058

ABSTRACT

Time series anomaly detection is very important to ensure the security of industrial control systems (ICSs). Many algorithms have performed well in anomaly detection. However, the performance of most of these algorithms decreases sharply with the increase in feature dimension. This paper proposes an anomaly detection scheme based on Graph Attention Network (GAT) and Informer. GAT learns sequential characteristics effectively, and Informer performs excellently in long time series prediction. In addition, long-time forecasting loss and short-time forecasting loss are used to detect multivariate time series anomalies. Short-time forecasting is used to predict the next time value, and long-time forecasting is employed to assist the short-time prediction. We conduct a large number of experiments on industrial control system datasets SWaT and WADI. Compared with most advanced methods, we achieve competitive results, especially on higher-dimensional datasets. Moreover, the proposed method can accurately locate anomalies and realize interpretability.

11.
Huan Jing Ke Xue ; 45(3): 1480-1491, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471863

ABSTRACT

Antibiotic pollution in the environment has a negative impact on ecosystem security. Taking the Oujiang River Basin as an example,high-performance liquid chromatography mass spectrometry(LC-MS)was used to detect the concentration of six classes of 35 antibiotics in the surface water of the southern Zhejiang River Basin. The concentration level and spatial distribution of antibiotics were analyzed,the risk of antibiotics to ecology and human health were assessed using relevant models,and the sources of antibiotics were discussed. The results showed that in 20 sampling sites,a total of four classes of 12 antibiotics were detected,including sulfonamides,quinolones,tetracyclines,and lincosamides. The total concentration was ND-1 018 ng·L-1. The highest detection rate was that of Lincomycin(90.48%),followed by that of sulfapyridine(38.10%). The three antibiotics with the highest average concentrations were ofloxacin(12.49 ng·L-1),Lincomycin(11.08 ng·L-1),and difloxacin(7.38 ng·L-1). Antibiotics in the basin showed mainly spotty pollution,which had large spatial differentiation. The average concentration of antibiotics in the upstream(54.39 ng·L-1)was higher than that mid-downstream(46.64 ng·L-1). The degree of antibiotic pollution from upstream to downstream showed a characteristic of being "sparse in the upstream and dense in the downstream. " This indicated that the concentration of antibiotics in the upstream was significantly different,whereas the pollution degree of antibiotics in the downstream was uniform. The upstream was mainly polluted by health,livestock,and poultry breeding wastewater emissions,and downstream pollution was mainly caused by densely populated activities and the rapid development of economy,trade,and industry. The ecological risk assessment results showed that the upstream site H6 had the highest risk quotient,ofloxacin and enrofloxacin had high risk levels, and lincomycin had a moderate risk level. Health risk assessment results showed that the Oujiang River surface water antibiotics posed no risk to human health.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/analysis , Ecosystem , Environmental Monitoring/methods , Ofloxacin/analysis , Lincomycin , Risk Assessment , Water/analysis , China , Water Pollutants, Chemical/analysis
12.
Inflamm Bowel Dis ; 30(1): 114-124, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37454276

ABSTRACT

BACKGROUND: Mucosal healing is one of the principal therapeutic targets for ulcerative colitis (UC). Mitochondria are dynamic organelles that undergo constant fusion and fission; however, the process that is most conducive to mucosal healing remains unclear. This study investigated the role of mitochondrial fission in mucosal healing in UC patients. METHODS: Quantitative polymerase chain reaction, Western blotting, and immunostaining were used to detect mitochondrial fission in UC patients and a dextran sulfate sodium-induced colitis model. Colonic organoids were used to investigate the role of mitochondrial fission in butyrate metabolism. Enzyme activity assays were performed to identify the key proteins involved in this mechanism. RESULTS: It was found that inhibition of mitochondrial fission promoted mucosal healing in mice and that there was an increase in mitochondrial fission in colonic epithelial cells of UC patients. Excessive fission inhibits stem cell proliferation by impairing butyrate metabolism in colonic organoids. The mitochondrial fission antagonist P110 failed to promote mucosal healing in antibiotic-treated mice, and the addition of exogenous butyrate reversed this effect. Increased butyrate exposure in the colonic stem cell niche has also been observed in UC patients. Mechanistically, enzyme activity assays on colonic organoids revealed that excessive fission inhibits mitochondrial acetoacetyl-CoA thiolase activity via reactive oxygen species. CONCLUSIONS: Collectively, these data indicate that excessive mitochondrial fission suppresses mucosal repair by inhibiting butyrate metabolism and provides a potential target for mucosal healing in patients with ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Humans , Animals , Mice , Colitis, Ulcerative/drug therapy , Mitochondrial Dynamics , Intestinal Mucosa/metabolism , Butyrates/pharmacology , Butyrates/metabolism
13.
iScience ; 26(11): 108279, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026194

ABSTRACT

Cesarean section (CS) delivery is known to disrupt the transmission of maternal microbiota to offspring, leading to an increased risk of inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly characterized. Here, we demonstrate that CS birth renders mice susceptible to dextran sulfate sodium (DSS)-induced colitis and impairs group 3 innate lymphoid cell (ILC3) development. Additionally, CS induces a sustained decrease in Lactobacillus abundance, which subsequently contributes to the colitis progression and ILC3 deficiency. Supplementation with a probiotic strain, L. acidophilus, or its metabolite, indole-3-lactic acid (ILA), can attenuate intestinal inflammation and restore ILC3 frequency and interleukin (IL)-22 level in CS offspring. Mechanistically, we indicate that ILA activates ILC3 through the aryl hydrocarbon receptor (AhR) signaling. Overall, our findings uncover a detrimental role of CS-induced gut dysbiosis in the pathogenesis of colitis and suggest L. acidophilus and ILA as potential targets to re-establish intestinal homeostasis in CS offspring.

14.
J Innate Immun ; 15(1): 709-723, 2023.
Article in English | MEDLINE | ID: mdl-37725937

ABSTRACT

Piezo1, the mechanosensory ion channel, has attracted increasing attention for its essential roles in various inflammatory responses and immune-related diseases. Although most of the key immune cells in inflammatory bowel disease (IBD) have been reported to be regulated by Piezo1, the specific role of Piezo1 in colitis has yet to be intensively studied. The present study investigated the impact of pharmacological inhibition of Piezo1 on dextran sulfate sodium (DSS)-induced colitis and explored the role of Piezo1 in intestinal immune cells in the context of colitis. We observed upregulated expression of Piezo1 in the colon tissue of mice with DSS-induced colitis. Pharmacological inhibition of Piezo1 by GsMTx4 diminished the severity of colitis. Piezo1 inhibition downregulated the expression of pro-inflammatory mediators Il1b, Il6, and Ptgs2 in colonic tissue and suppressed the production of IL-6 from macrophages and dendritic cells without altering the balance of T helper (Th) cells. In particular, Piezo1 did not affect cell viability but regulated cell proliferation and production of IL-17A in group 3 innate lymphoid cells (ILC3s), which is dependent on the PI3K-Akt-mTOR signaling pathway. Our findings uncover Piezo1 as an effective regulator of gut inflammation. Targeting Piezo1 could be a promising strategy to modulate intestinal immunity in IBD.


Subject(s)
Colitis , Immunity, Innate , Ion Channels , Lymphocytes , Animals , Mice , Colitis/chemically induced , Colitis/metabolism , Colon/metabolism , Disease Models, Animal , Inflammation/metabolism , Ion Channels/antagonists & inhibitors , Ion Channels/genetics , Ion Channels/metabolism , Lymphocytes/immunology , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism
15.
World J Clin Cases ; 11(26): 6240-6245, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37731556

ABSTRACT

BACKGROUND: Endometriosis is a common benign gynecological disease that causes dysmenorrhea in women of childbearing age. Malignant tumors derived from endometriosis are rarely reported and are found in only 1% of all patients with endometriosis. Here, we report a well-differentiated squamous cell carcinoma (SCC) caused by squamous metaplasia of endometriosis that co-occurred in the uterus and ovaries. CASE SUMMARY: A 57-year-old postmenopausal woman had a 6-month history of irregular uterine bleeding. The uterus and adnexa were examined by computed tomography, and there were two solid cystic masses in the pelvis and right adnexa. Histological findings of surgical specimens showed well-differentiated SCC arising from squamous metaplasia of ectopic endometrial glands in the uterus and ovaries. The patient received chemotherapy after surgery and was followed up for 3 mo without metastasis. CONCLUSION: The continuity between ectopic endometrial glands and SCC supports that SCC originates from ectopic endometrial glands with metaplasia towards squamous epithelium.

16.
Gut Pathog ; 15(1): 45, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752551

ABSTRACT

BACKGROUND: Patients with liver cirrhosis (LC) are prone to gastric mucosa damage. We investigated the alterations of gastric mucosa in LC patients and their possible mechanisms through multi-omics. RESULTS: We observed significant gastric mucosa microbial dysbiosis in LC subjects. Gastric mucosal microbiomes of LC patients contained a higher relative abundance of Streptococcus, Neisseria, Prevotella, Veillonella, and Porphyromonas, as well as a decreased abundance in Helicobacter and Achromobacter, than control subjects. The LC patients had higher levels of bile acids (BAs) and long-chain acylcarnitines (long-chain ACs) in serum. The gastric mucosal microbiomes were associated with serum levels of BAs and long-chain ACs. Transcriptome analyses of gastric mucosa revealed an upregulation of endothelial cell specific molecule 1, serpin family E member 1, mucin 2, caudal type homeobox 2, retinol binding protein 2, and defensin alpha 5 in LC group. Besides, the bile secretion signaling pathway was significantly upregulated in the LC group. CONCLUSIONS: The alterations in the gastric mucosal microbiome and transcriptome of LC patients were identified. The impaired energy metabolism in gastric mucosal cells and bile acids might aggravate the inflammation of gastric mucosa and even exacerbate the Correa's cascade process. The gastric mucosal cells might reduce bile acid toxicity by bile acid efflux and detoxification. TRIAL REGISTRATION: ChiCTR2100051070.

17.
Chaos ; 33(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37549124

ABSTRACT

In this paper, we put forward an interesting fixed-time (FXT) stability lemma, which is based on a whole new judging condition, and the minimum upper bound for the stability start time is obtained. In the new FXT stability lemma, the mathematical relation between the upper bound of the stability start time and the system parameters is very simple, and the judgment condition only involves two system parameters. To indicate the usability of the new FXT stability lemma, we utilize it to study the FXT stability of a bidirectional associative memory neural network (BAMNN) with bounded perturbations via sliding mode control. To match the developed FXT stability lemma, novel sliding mode state variables and a two-layer sliding mode controller are designed. According to the developed FXT stability lemma, the perturbed BAMNN can achieve FXT stability under the devised sliding mode controller. The upper bound of the stability start time can be calculated easily by virtue of the control parameters, and the sufficient conditions guaranteeing that the perturbed BAMNN can achieve FXT stability have also been derived. Last, we provide some confirmatory simulations.

18.
Nanoscale Adv ; 5(16): 4158-4166, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37560419

ABSTRACT

Although silicon has a high volumetric energy density as an anode material for Li-ion batteries, its volumetric expansion and sluggish Li+ migration kinetics need to be urgently addressed. In this work, cage-like structure materials (HRPOSS) derived from the in situ hydrogen reduction of polyhedral oligomeric silsesquioxane (T8-type POSS) were constructed as an Si@C anode for Li-ion batteries. Benefiting from the intriguing features of the Si/N double gradient and even-distributed silicon, HRPOSS-6 exhibited faint volume changes and fast ion-electron kinetics. Moreover, the uniformly immobilized nano-silicic and concentration gradient were favorable for accelerated ion migration. Therefore, HRPOSS-6 exhibited good electrochemical performances given that its cage structure could relieve the volume expansion. HRPOSS-6 demonstrated a high reversible capacity of 1814.1 mA h g-1 and long cycling performance after 200 cycles with 635 mA h g-1 at a current density of 0.5 A g-1. Accordingly, this Si/C/N composite exhibited great potential for high energy Li-ion batteries, where the corresponding full-cell (HRPOSS-6//LiNi0.6Co0.2Mn0.2O2) showed a cycle life of 200 cycles with over 80% capacity retention at rate of 1C. This work exploits the concentration gradients of dual elements for the capacity improvement of Si anodes and offers insight into the development of high-performance Si@C anode materials for advanced Li-ion batteries.

19.
Nat Commun ; 14(1): 5093, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607912

ABSTRACT

Antimicrobial peptides (AMPs) are important mediators of intestinal immune surveillance. However, the regional heterogeneity of AMPs and its regulatory mechanisms remain obscure. Here, we clarified the regional heterogeneity of intestinal AMPs at the single-cell level, and revealed a cross-lineages AMP regulation mechanism that bile acid dependent transcription factors (BATFs), NR1H4, NR1H3 and VDR, regulate AMPs through a ligand-independent manner. Bile acids regulate AMPs by perturbing cell differentiation rather than activating BATFs signaling. Chromatin accessibility determines the potential of BATFs to regulate AMPs at the pre-transcriptional level, thus shaping the regional heterogeneity of AMPs. The BATFs-AMPs axis also participates in the establishment of intestinal antimicrobial barriers of fetuses and the defects of antibacterial ability during Crohn's disease. Overall, BATFs and chromatin accessibility play essential roles in shaping the regional heterogeneity of AMPs at pre- and postnatal stages, as well as in maintenance of antimicrobial immunity during homeostasis and disease.


Subject(s)
Chromatin , Intestines , Chromatin/genetics , Antimicrobial Peptides , Bile Acids and Salts , Transcription Factors/genetics
20.
Mediators Inflamm ; 2023: 5007488, 2023.
Article in English | MEDLINE | ID: mdl-37484603

ABSTRACT

Interstitial inflammation is an important mechanism of pathological damage in renal injury caused by hyperuricemia. Protease-activated receptor-2 (PAR2) is a class of targets that act upstream of the PI3K/AKT/NF-κB pathway and is involved in various inflammatory diseases. We induced a hyperuricemia model in rats by adenine and ethambutol gavage in an in vivo experiment. We demonstrated that PAR2 and PI3K/AKT/NF-κB pathway expression were significantly upregulated in renal tissues, with massive inflammatory cell infiltration in the renal interstitium and renal tissue injury. Treating hyperuricemic rats with AZ3451, a selective metabotropic antagonist of PAR2, we demonstrated that PAR2 antagonism inhibited the PI3K/AKT/NF-κB pathway and attenuated tubular dilation and tubulointerstitial inflammatory cell infiltration. The phospholipid metabolism profiles provided a perfect separation between the normal and hyperuricemic rats. In addition, we also found that AZ3451 can affect phospholipid metabolism. Our work suggests that PAR2 may mediate hyperuricemia-mediated renal injury by activating the PI3K/AKT/NF-κB pathway. The PAR2 antagonist AZ3451 may be a promising therapeutic strategy for hyperuricemia-induced inflammatory responses.


Subject(s)
Hyperuricemia , Rats , Animals , Hyperuricemia/drug therapy , NF-kappa B/metabolism , Signal Transduction/physiology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney/metabolism , Phospholipids/metabolism , Phospholipids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...