Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(10): e0186040, 2017.
Article in English | MEDLINE | ID: mdl-29023475

ABSTRACT

Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp), in which 11,445 unigenes (65.34%) showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr) database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs) were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR) were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE) was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE) was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR) genes, heat shock protein (Hsp) genes, intracellular-compatible-solutes-metabolism-related (ICSMR) genes and glutathione S-transferase (GST). These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Fungal , Heat-Shock Response/genetics , Hypocreales/physiology , Gene Expression Profiling , Gene Ontology , Hypocreales/genetics , Reverse Transcriptase Polymerase Chain Reaction
2.
J Insect Physiol ; 71: 21-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25257538

ABSTRACT

Mitochondrial complex I is the main source of reactive oxygen species (ROS) production, but the exact site of superoxide generation or their relative contribution is not clear. This study aims to determine the function of iron-sulfur clusters (ISCU) in the initiation of ROS generation. ISCU2 and ISCU8 were cloned from Spodoptera litura which shared the conserved amino acid sequence with other insects. The expressions of the two genes were ubiquitous throughout the whole development stages and tissues. Knockdown of ISCU2 and ISCU8 resulted in the decline of the ROS, whereas rotenone and azadirachtin treatment up-regulated ROS levels by increasing mRNA expression. Furthermore, antioxidant enzyme activity of SOD and POD were up-regulated by rotenone and azadirachtin treatment and then declined after ISCU was silenced. Our results suggest the possibility that the molecules of ISCU2 and ISCU8 in complex I may serve as potential sites in the initiation of ROS generation.


Subject(s)
Antioxidants/metabolism , Insect Proteins/genetics , Iron-Sulfur Proteins/genetics , Mitochondrial Proteins/genetics , Reactive Oxygen Species/metabolism , Spodoptera/genetics , Amino Acid Sequence , Animals , Insect Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sf9 Cells , Spodoptera/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...