Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Fungi (Basel) ; 10(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38392815

ABSTRACT

Magnaporthe oryzae, the pathogen responsible for rice blast disease, utilizes specialized infection structures known as appressoria to breach the leaf cuticle and establish intracellular, infectious hyphae. Our study demonstrates that the peroxin MoPex22 is crucial for appressorium function, specifically for the development of primary penetration hyphae. The ∆Mopex22 mutant exhibited slow growth, reduced aerial hyphae, and almost complete loss of virulence. Specifically, despite the mutant's capability to form appressoria, it showed abnormalities during appressorium development, including reduced turgor, increased permeability of the appressorium wall, failure to form septin rings, and significantly decreased ability to penetrate host cells. Additionally, there was a delay in the degradation of lipid droplets during conidial germination and appressorium development. Consistent with these findings, the ΔMopex22 mutant showed an inefficient utilization of long-chain fatty acids and defects in cell wall integrity. Moreover, our findings indicate that MoPex22 acts as an anchor for MoPex4, facilitating the localization of MoPex4 to peroxisomes. Together with MoPex4, it affects the function of MoPex5, thus regulating the import of peroxisomal matrix proteins. Overall, these results highlight the essential role of MoPex22 in regulating the transport of peroxisomal matrix proteins, which affect fatty acid metabolism, glycerol accumulation, cell wall integrity, growth, appressorium development, and the pathogenicity of M. oryzae. This study provides valuable insights into the significance of peroxin functions in fungal biology and appressorium-mediated plant infection.

2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38419294

ABSTRACT

Autism spectrum disorder (ASD) is estimated to influence as many as 1% children worldwide, but its etiology is still unclear. It has been suggested that gut microbiomes play an important role in regulating abnormal behaviors associated with ASD. A de facto standard analysis on the microbiome-associated diseases has been diversity analysis, and nevertheless, existing studies on ASD-microbiome relationship have not produced a consensus. Here, we perform a comprehensive analysis of the diversity changes associated with ASD involving alpha-, beta-, and gamma-diversity metrics, based on 8 published data sets consisting of 898 ASD samples and 467 healthy controls (HC) from 16S-rRNA sequencing. Our findings include: (i) In terms of alpha-diversity, in approximately 1/3 of the studies cases, ASD patients exhibited significantly higher alpha-diversity than the HC, which seems to be consistent with the "1/3 conjecture" of diversity-disease relationship (DDR). (ii) In terms of beta-diversity, the AKP (Anna Karenina principle) that predict all healthy microbiomes should be similar, and every diseased microbiome should be dissimilar in its own way seems to be true in approximately 1/2 to 3/4 studies cases. (iii) In terms of gamma-diversity, the DAR (diversity-area relationship) modeling suggests that ASD patients seem to have large diversity-area scaling parameter than the HC, which is consistent with the AKP results. However, the MAD (maximum accrual diversity) and RIP (ratio of individual to population diversity) parameters did not suggest significant differences between ASD patients and HC. Throughout the study, we adopted Hill numbers to measure diversity, which stratified the diversity measures in terms of the rarity-commonness-dominance spectrum. It appears that the differences between ASD patients and HC are more propounding on rare-species side than on dominant-species side. Finally, we discuss the apparent inconsistent diversity-ASD relationships among different case studies and postulate that the relationships are not monotonic.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Microbiota , Child , Humans , Gastrointestinal Microbiome/genetics
3.
Microbiol Res ; 281: 127624, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295680

ABSTRACT

Cell wall integrity (CWI) is crucial for the growth, development, and host invasion of pathogenic fungi. The APSES transcription factor Swi6 in fungi plays a role in mediating cell wall integrity through the mitogen-activated protein kinase (MAPK) signaling pathway. Ceratocystis fimbriata is a notorious pathogenic fungus responsible for causing black rot in sweet potatoes. In this study, an orthologous APSES transcription factor Swi6 (CfSwi6) downstream of the CWI regulatory pathway in C. fimbriata was characterized. Deletion of CfSWI6 leads to impaired hyphal development, conidiation, and compromised cell wall integrity, resulting in a significant reduction in virulence. Transcriptome analysis revealed the involvement of CfSWI6 in various pathways, including the MAPK pathway, DNA synthesis and stress response. ChIP-seq data provided predictions of potential target genes regulated by CfSwi6. Through yeast one-hybrid, we confirmed the direct binding of CfSwi6 to the promoter of the chitin synthetase gene. In summary, these findings indicated that CfSwi6 plays an important role in the growth, development, and pathogenicity of C. fimbriata. This study provides new insights into the pathogenic mechanism of C. fimbriata in sweet potato and inspires potential strategies to control sweet potato black rot.


Subject(s)
Ceratocystis , Saccharomyces cerevisiae , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics , Saccharomyces cerevisiae/genetics , Cell Wall/metabolism
4.
Int J Womens Health ; 16: 99-109, 2024.
Article in English | MEDLINE | ID: mdl-38269297

ABSTRACT

Purpose: To construct a new clinical staging system including the number of lymph node metastases to supplement the International Federation of Gynecology and Obstetrics (FIGO) staging for the prognosis of endometrial carcinoma patients. Methods: This cohort study retrieved the data of 28,824 patients confirmed as endometrial carcinoma between 2010 and 2015 in the surveillance, epidemiology, and end results (SEER) database. COX risk proportional model was established to evaluate the association between FIGO staging with the all-cause mortality of endometrial carcinoma. The diagnostic value of FIGO staging and the new staging for the mortality of patients were evaluated by receiver operator characteristic curve (ROC). Hazard ratio (HR) and 95% confidence interval (CI) were effect size. Results: The 5-year survival rate of all participants was 77.21%. The median follow-up time was 60.00 (60.00,60.00) months. Patients at FIGO staging IB (HR=1.75, 95% CI: 1.62-1.90), FIGO staging II (HR=2.22, 95% CI: 2.00-2.47), FIGO staging IIIA (HR=2.74, 95% CI: 2.43-3.09), FIGO staging IIIB (HR=4.07, 95% CI: 3.48-4.76), FIGO staging IIIC1 (HR=3.84, 95% CI: 3.52-4.20), FIGO staging IIIC2 (HR=4.52, 95% CI: 4.09-4.99), FIGO staging IVA (HR=5.56, 95% CI: 4.58-6.74), and FIGO staging IVB (HR=7.62, 95% CI: 6.94-8.36) were associated with increased risk of all-cause mortality of endometrial carcinoma patients. After adding positive lymph nodes as another covariate in Model 3, the effect on of FIGO staging survival was reduced when the FIGO staging was higher than stage III/IV. The C-index of the new staging 0.781 (95% CI: 0.774-0.787) was higher than FIGO staging 0.776 (95% CI: 0.770-0.783). Conclusion: Our new staging using the number of positive lymph nodes supplement to the FIGO staging was superior than the FIGO staging for predicting the prognosis of endometrial cancer patients, which might help more accurately identify endometrial carcinoma patients who were at high risk of mortality and offer timely treatments in these patients.

5.
Soft Matter ; 20(3): 463-483, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38167904

ABSTRACT

As a special type of branched polymers, comb-like polymers simultaneously possess the structural characteristics of a linear backbone profile and crowded sidechain branches/grafts, and such structural uniqueness leads to reduced interchain entanglement, enhanced molecular orientation, and unique stimulus-response behavior, which greatly expands the potential applications in the fields of super-soft elastomers, molecular sensors, lubricants, photonic crystals, etc. In principle, all these molecular features can be traced back to three structural parameters, i.e., the degree of polymerization of the backbone (Nb), the degree of polymerization of the graft sidechain (Ng), and the grafting density (σ). Consequently, it is of great importance to understand the correlation mechanism between the structural characteristics and physicochemical properties, among which, the conformational properties in dilute solution have received the most attention due to its central position in polymer science. In the past decades, the development of synthetic chemistry and characterization techniques has greatly stimulated the progress of this field, and a number of experiments have been executed to verify the conformational properties; however, due to the complexity of the structural parameters and the diversity of the chemical design, the achieved experimental progress displays significant controversies compared with the theoretical predictions. This review aims to provide a full picture of recent research progress on this topic, specifically, (1) first, a few classical theoretical models regarding the chain conformation are introduced, and the quasi-two-parameter (QTP) theory for the conformation analysis is highlighted; (2) second, the research progress of the static conformation of comb-like polymers in dilute solution is discussed; (3) third, the research progress of the dynamic conformation in dilute solution is further discussed. The key issues, existing controversies and future research directions are also highlighted. We hope that this review can provide insightful information for the understanding of the conformational properties of comb-like polymers, open a new door for the regulation of conformational behavior in related applications, and promote related theoretical and experimental research in the community.

6.
Fungal Genet Biol ; 170: 103846, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048937

ABSTRACT

The Erp3 protein, which is an important member of the p24 family, is primarily responsible for the transport of cargo from the ER to the Golgi apparatus in Saccharomyces cerevisiae. However, the function of Erp3 in plant pathogenic fungi has not been reported. In this study, we characterized the ERP3 gene in Ceratocystis fimbriata, which causes the devastating disease sweetpotato black rot. The ΔCferp3 mutants exhibited slow growth, reduced conidia production, attenuated virulence, and reduced ability to induce host to produce toxins. Further analysis revealed that CfErp3 was localized in the ER and vesicles and regulated endocytosis, cell wall integrity, and osmotic stress responses, modulated ROS levels, and the production of ipomeamarone during pathogen-host interactions. These results indicate that CfErp3 regulates C. fimbriata growth and pathogenicity as well as the production of ipomeamarone in sweetpotato by controlling endocytosis, oxidative homeostasis, and responses to cell wall and osmotic stresses.


Subject(s)
Ascomycota , Sesquiterpenes , Virulence/genetics , Ceratocystis , Saccharomyces cerevisiae
7.
Microorganisms ; 11(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004677

ABSTRACT

Ceratocystis fimbriata (C. fimbriata) is a notorious pathogenic fungus that causes sweet potato black rot disease. The APSES transcription factor Swi6 in fungi is located downstream of the cell wall integrity (CWI)-mitogen-activated protein kinase (MAPK) signaling pathway and has been identified to be involved in cell wall integrity and virulence in several filamentous pathogenic fungi. However, the specific mechanisms by which Swi6 regulates the growth and pathogenicity of plant pathogenic fungi remain elusive. In this study, the SWI6 deletion mutants and complemented strains of C. fimbriata were generated. Deletion of Swi6 in C. fimbriata resulted in aberrant growth patterns. Pathogenicity assays on sweet potato storage roots revealed a significant decrease in virulence in the mutant. Non-targeted metabolomic analysis using LC-MS identified a total of 692 potential differentially accumulated metabolites (PDAMs) in the ∆Cfswi6 mutant compared to the wild type, and the results of KEGG enrichment analysis demonstrated significant enrichment of PDAMs within various metabolic pathways, including amino acid metabolism, lipid metabolism, nucleotide metabolism, GPI-anchored protein synthesis, and ABC transporter metabolism. These metabolic pathways were believed to play a crucial role in mediating the growth and pathogenicity of C. fimbriata through the regulation of CWI. Firstly, the deletion of the SWI6 gene led to abnormal amino acid and lipid metabolism, potentially exacerbating energy storage imbalance. Secondly, significant enrichment of metabolites related to GPI-anchored protein biosynthesis implied compromised cell wall integrity. Lastly, disruption of ABC transport protein metabolism may hinder intracellular transmembrane transport. Importantly, this study represents the first investigation into the potential regulatory mechanisms of SWI6 in plant filamentous pathogenic fungi from a metabolic perspective. The findings provide novel insights into the role of SWI6 in the growth and virulence of C. fimbriata, highlighting its potential as a target for controlling this pathogen.

8.
Langmuir ; 39(37): 13303-13315, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37669096

ABSTRACT

In this work, the adsorption kinetics of the PBAN/AAO system under flushing condition has been investigated, where PBAN and AAO represent poly(benzyl acrylate) and anodic alumina oxide (AAO, average pore radius R0 ≈ 10 nm) nanochannel, respectively. Our specially designed double-pump flushing system is proved to eliminate the overshoot phenomenon and in situ monitor transmembrane pressure (ΔP) as a function of flushing time (t) and flow rate (Q), which gives the effective pore radius (R), cross-sectional coverage factor (χ = [1 - (R/R0)2]), and characteristic ratio (rc) of the increments of χ during each adsorption/desorption cycle at a given bulk solution concentration (Cbulk). Our findings include: (1) by gradient increasing Cbulk from 10 to 200 mg/L at Q = 10 mL/h, the shortest PBA40 displays a saturation adsorption behavior when Cbulk ≥ 80 mg/L and t ≥ 2000 s, which agrees well with the prediction of blob model, whereas for the longer PBAN chains, the chain length (N) and concentration-dependent adsorption tendency get stronger as N increases from 40 to 620 at t ≥ 2000 s, in particular, R/R0 ∼ N-0.20 is observed at Cbulk = 140 mg/L; (2) by focusing on the platform χ in the saturation adsorption regime (χsat), the longer PBAN displays a stronger adsorption trend with partially reversible feature at Q = 5.0 mL/h, namely, as N increases from 40 to 620, χsat increases from 0.15 to 0.83 at Cbulk = 100 mg/L, where rc changes from 0.25 ± 0.10 to 0.80 ± 0.10 as the adsorption/desorption flushing cycle increases from 1 to 8 at Cbulk = 100 mg/L; (3) by further assuming a solvent nonpenetrating and nondraining adsorption layer, χsat determined in the case of curved surface can be comparable to the physical meaning of adsorption thickness (Δad) in the case of flat-surface adsorption, and the fitting result indicates χsat ∼ Δad ∼ N0.58, falling between Δad ∼ N1/2 and Δad ∼ N1.0 predicted by the mean-field and scaling theories for real multichain adsorption, respectively. Overall, the present work not only clarifies some controversies but also provides unambiguous evidence supporting the existence of tightly adsorbed internal and loosely adsorbed external layers.

9.
BMC Biol ; 21(1): 148, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365564

ABSTRACT

BACKGROUND: Unidirectional regeneration in the basal chordate Ciona intestinalis involves the proliferation of adult stem cells residing in the branchial sac vasculature and the migration of progenitor cells to the site of distal injury. However, after the Ciona body is bisected, regeneration occurs in the proximal but not in the distal fragments, even if the latter include a part of the branchial sac with stem cells. A transcriptome was sequenced and assembled from the isolated branchial sacs of regenerating animals, and the information was used to provide insights into the absence of regeneration in distal body fragments. RESULTS: We identified 1149 differentially expressed genes, which were separated into two major modules by weighted gene correlation network analysis, one consisting of mostly upregulated genes correlated with regeneration and the other consisting of only downregulated genes associated with metabolism and homeostatic processes. The hsp70, dnaJb4, and bag3 genes were among the highest upregulated genes and were predicted to interact in an HSP70 chaperone system. The upregulation of HSP70 chaperone genes was verified and their expression confirmed in BS vasculature cells previously identified as stem and progenitor cells. siRNA-mediated gene knockdown showed that hsp70 and dnaJb4, but not bag3, are required for progenitor cell targeting and distal regeneration. However, neither hsp70 nor dnaJb4 were strongly expressed in the branchial sac vasculature of distal fragments, implying the absence of a stress response. Heat shock treatment of distal body fragments activated hsp70 and dnaJb4 expression indicative of a stress response, induced cell proliferation in branchial sac vasculature cells, and promoted distal regeneration. CONCLUSIONS: The chaperone system genes hsp70, dnaJb4, and bag3 are significantly upregulated in the branchial sac vasculature following distal injury, defining a stress response that is essential for regeneration. The stress response is absent from distal fragments, but can be induced by a heat shock, which activates cell division in the branchial sac vasculature and promotes distal regeneration. This study demonstrates the importance of a stress response for stem cell activation and regeneration in a basal chordate, which may have implications for understanding the limited regenerative activities in other animals, including vertebrates.


Subject(s)
Ciona intestinalis , Ciona , Animals , Ciona/genetics , Ciona intestinalis/genetics , Stem Cells , Chromosome Mapping , Molecular Chaperones/genetics , HSP70 Heat-Shock Proteins/genetics
10.
Mol Plant Microbe Interact ; 36(10): 608-622, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37140471

ABSTRACT

The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Magnaporthe , Oryza , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence , Oryza/microbiology , Cell Wall/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Fungal
11.
Front Cell Infect Microbiol ; 13: 1099967, 2023.
Article in English | MEDLINE | ID: mdl-36824685

ABSTRACT

B vitamins are essential micro-organic compounds for the development of humans and animals. Vitamin B6 comprises a group of components including pyridoxine, pyridoxal, and pyridoxamine. In addition, vitamin B6 acts as the coenzymes in amino acid biosynthesis, decarboxylation, racemic reactions, and other biological processes. In this study, we found that the expressions of a gene encoding pyridoxine biosynthesis protein (PDX1) were significantly upregulated in the early infectious stages in M. oryzae. Furthermore, deletion of MoPDX1 slowed vegetative growth on different media, especially on MM media, and the growth defect was rescued when MoPdx1-protein was expressed in mutants strains and when commercial VB6 (pyridoxine) was added exogenously. However, VB6 content in different strains cultured in CM media has no significant difference, suggested that MoPdx1 was involved in de novo VB6 biosynthesis not in uptake process, and VB6 regulates the vegetative growth of M. oryzae. The ΔMopdx1 mutants presented abnormal appressorium turgor, slowed invasive growth and reduced virulence on rice seedlings and sheath cells. MoPdx1 was located in the cytoplasm and present in spore and germ tubes at 14 hours post inoculation (hpi) and then transferred into the appressorium at 24 hpi. Addition of VB6 in the conidial suspentions could rescue the defects of appressorium turgor pressure at 14 hpi or 24 hpi, invasive growth and pathogenicity of the MoPDX1 deletion mutants. Indicated that MoPdx1 affected the appressorium turgor pressure, invasive growth and virulence mainly depended on de novo VB6, and VB6 was biosynthesized in conidia, then transported into the appressorium, which play important roles in substances transportation from conidia to appressorium thus to regulate the appressorium turgor pressure. However, deletion of MoPDX1 did not affect the ability that scavenge ROS produced by rice cells, and the mutant strains were unable to activate host defense responses. In addition, co-immunoprecipitation (Co-IP) assays investigating potential MoPdx1-interacting proteins suggested that MoPdx1 might take part in multiple pathways, especially in the ribosome and in biosynthesis of some substances. These results indicate that vitamins are involved in the development and pathogenicity of M. oryzae.


Subject(s)
Magnaporthe , Oryza , Humans , Virulence , Pyridoxine/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Magnaporthe/genetics , Plant Diseases , Spores, Fungal , Gene Expression Regulation, Fungal
12.
FASEB J ; 37(2): e22734, 2023 02.
Article in English | MEDLINE | ID: mdl-36583697

ABSTRACT

PTPRT (receptor-type tyrosine-protein phosphatase T), a brain-specific type 1 transmembrane protein, plays an important role in neurodevelopment and synapse formation. However, whether abnormal PTPRT signaling is associated with Alzheimer's disease (AD) remains elusive. Here, we report that Ptprt mRNA expression is found to be downregulated in the brains of both human and mouse models of AD. We further identified that the PTPRT intracellular domain (PICD), which is released by ADAM10- and γ-secretase-dependent cleavage of PTPRT, efficiently translocates to the nucleus via a conserved nuclear localization signal (NLS). We show that inhibition of nuclear translocation of PICD leads to an accumulation of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a substrate of PTPRT-eventually resulting in neuronal cell death. Consistently, RNA sequencing reveals that overexpression of PICD leads to changes in the expression of genes that are functionally associated with synapse formation, cell adhesion, and protein dephosphorylation. Moreover, overexpression of PICD not only decreases the level of phospho-STAT3Y705 and amyloid ß production in the hippocampus of APP/PS1 mice but also partially improves synaptic function and behavioral deficits in this mouse model of AD. These findings suggest that a novel role of the ADAM 10- and γ-secretase-dependent cleavage of PTPRT may alleviate the AD-like neurodegenerative processes.


Subject(s)
ADAM10 Protein , Alzheimer Disease , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Animals , Humans , Mice , ADAM10 Protein/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Disease Models, Animal , Membrane Proteins/genetics , Membrane Proteins/metabolism , Presenilin-1/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
14.
Genomics ; 114(6): 110518, 2022 11.
Article in English | MEDLINE | ID: mdl-36347326

ABSTRACT

The Muscovy duck (Cairina moschata) is an economically important poultry species, which is susceptible to fatty liver. Thus, the Muscovy duck may serve as an excellent candidate animal model of non-alcoholic fatty liver disease. However, the mechanisms underlying fatty liver development in this species are poorly understood. In this study, we report a chromosome-level genome assembly of the Muscovy duck, with a contig N50 of 11.8 Mb and scaffold N50 of 83.16 Mb. The susceptibility of Muscovy duck to fatty liver was mainly attributed to weak lipid catabolism capabilities (fatty acid ß-oxidation and lipolysis). Furthermore, conserved noncoding elements (CNEs) showing accelerated evolution contributed to fatty liver formation by down-regulating the expression of genes involved in hepatic lipid catabolism. We propose that the susceptibility of Muscovy duck to fatty liver is an evolutionary by-product. In conclusion, this study revealed the potential mechanisms underlying the susceptibility of Muscovy duck to fatty liver.


Subject(s)
Fatty Liver , Humans , Fatty Liver/genetics , Fatty Liver/veterinary , Chromosomes , Lipids
15.
Front Microbiol ; 13: 974473, 2022.
Article in English | MEDLINE | ID: mdl-36267189

ABSTRACT

Antagonistic microorganisms are considered to be the most promising biological controls for plant disease. However, they are still not as popular as chemical pesticides due to complex environmental factors in the field. It is urgent to exploit their potential genetic characteristics and excellent properties to develop biopesticides with antimicrobial substances as the main components. Here, the serine protease Sp1 isolated from the Bacillus licheniformis W10 strain was confirmed to have a broad antifungal and antibacterial spectrum. Sp1 treatment significantly inhibited fungal vegetative growth and damaged the structure of hyphae, in accordance with that caused by W10 strain. Furthermore, Sp1 could activate the systemic resistance of peach twigs, fruits and tobacco. Dual comparative transcriptome analysis uncovered how Sp1 resisted the plant pathogenic fungus Phomopsis amygdali and the potential molecular resistance mechanisms of tobacco. In PSp1 vs. P. amygdali, RNA-seq identified 150 differentially expressed genes (DEGs) that were upregulated and 209 DEGs that were downregulated. Further analysis found that Sp1 might act on the energy supply and cell wall structure to inhibit the development of P. amygdali. In TSp1 vs. Xanthi tobacco, RNA-seq identified that 5937 DEGs were upregulated and 2929 DEGs were downregulated. DEGs were enriched in the metabolic biosynthesis pathways of secondary metabolites, plant hormone signal transduction, plant-pathogen interactions, and MAPK signaling pathway-plant and further found that the genes of salicylic acid (SA) and jasmonic acid (JA) signaling pathways were highly expressed and the contents of SA and JA increased significantly, suggesting that systemic resistance induced by Sp1 shares features of SAR and ISR. In addition, Sp1 might induce the plant defense responses of tobacco. This study provides insights into the broad-spectrum resistance molecular mechanism of Sp1, which could be used as a potential biocontrol product.

16.
Front Cell Infect Microbiol ; 12: 983757, 2022.
Article in English | MEDLINE | ID: mdl-36159636

ABSTRACT

Magnaporthe oryzae is one of the most destructive crop pathogens in the world, causing huge losses in rice harvest every year. Bacillus subtilis is a potential biocontrol agent that has been explored in many crop systems because it is a potent producer of bioactive compounds. However, the mechanisms by which these agents control rice blasts are not fully understood. We show that B. subtilis KLBMPGC81 (KC81) and its supernatant (SUP) have high antimicrobial activity against M. oryzae strain Guy11. To better exploit KC81 as a biocontrol agent, the mechanism by which KC81 suppresses rice blast pathogens was investigated. This study shows that KC81 SUP is effective in controlling rice blast disease. The SUP has a significant effect on suppressing the growth of M. oryzae and appressorium-mediated plant infection. KC81 SUP compromises cell wall integrity, microtubules and actin cytoskeleton, mitosis, and autophagy, all of which are required for M. oryzae growth, appressorium development, and host infection. We further show that the SUP reduces the activity of the cyclin-dependent kinase Cdc2 by enhancing the phosphorylation of Cdc2 Tyr 15, thereby impairing mitosis in M. oryzae cells. SUP induces the cell wall sensor MoWsc1 to activate the cell wall integrity pathway and Mps1 and Pmk1 mitogen-activated protein kinases. Taken together, our findings reveal that KC81 is an effective fungicide that suppresses M. oryzae growth, appressorium formation, and host infection by abnormally activating the cell wall integrity pathway, disrupting the cytoskeleton, mitosis, and autophagy.


Subject(s)
Biological Phenomena , Fungicides, Industrial , Magnaporthe , Oryza , Ascomycota , Bacillus subtilis/metabolism , Cell Wall/metabolism , Cyclin-Dependent Kinases/metabolism , Fungal Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Diseases/prevention & control , Signal Transduction
17.
Front Plant Sci ; 13: 773898, 2022.
Article in English | MEDLINE | ID: mdl-35463420

ABSTRACT

The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose on crops and trees and causes enormous economic losses in the world. Protein kinases have been implicated in the regulation of growth and development, and responses to extracellular stimuli. However, the mechanism of the protein kinases regulating phytopathogenic fungal-specific processes is largely unclear. In the study, a serine/threonine CgSat4 was identified in C. gloeosporioides. The CgSat4 was localized in the cytoplasm. Targeted gene deletion showed that CgSat4 was essential for vegetative growth, sporulation, and full virulence. CgSat4 is involved in K+ uptake by regulating the localization and expression of the potassium transporter CgTrk1. CgSat4 is required for the cation stress resistance by altering the phosphorylation of CgHog1. Our study provides insights into potassium acquisition and the pathogenesis of C. gloeosporioides.

18.
Biomaterials ; 283: 121455, 2022 04.
Article in English | MEDLINE | ID: mdl-35259585

ABSTRACT

Soy protein-derived amyloid fibrils (SAFs) held desirable features, and with rational tailoring of physical structures, their techno-functions could be further improved. Here, we report a strategy for tailoring SAFs to form hydrogels with appealing mechanical properties as mediated by (-)-epigallocatechin-3-gallate (EGCG). The SAFs-EGCG complexes are characterized by measuring changes in gelling properties, identifying interfacing residues, and understanding the molecular geometry of complexes. EGCG is found to cleave rigid SAFs and induce the formation of large branched chains, which are essential for forming gel-like structures. Results in this study show that SAFs-EGCG complexes and their digesta are non-toxic in human cell lines, and these complexes are superior in inhibiting the growth of Escherichia coli and Staphylococcus aureus. This study provides new insights into remodeling structures and steering techno-functions of SAFs through interaction with EGCG, and will serve as a basis for EGCG as a potent remodeling agent of food protein-derived fibrils.


Subject(s)
Amyloid , Catechin , Amyloid/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Humans , Soybean Proteins/pharmacology
19.
Oncologist ; 27(1): e64-e75, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35305106

ABSTRACT

BACKGROUND: The glioblastoma-amplified sequence (GBAS) is a newly identified gene that is amplified in approximately 40% of glioblastomas. This article probes into the expression, prognostic significance, and possible pathways of GBAS in ovarian cancer (OC). METHOD: Immunohistochemical methods were used to evaluate the expression level of GBAS in OC and its relationship with clinicopathological characteristics and prognosis. Glioblastoma-amplified sequence shRNA was designed to transfect into OC cell lines to silence GBAS expression, then detect the proliferation, apoptosis, and migration ability of the cell. Furthermore, an in vitro tumor formation experiment in mice was constructed to prove the effect of GBAS expression on the growth of OC in vivo. To further study the regulation mechanism of GBAS, we performed co-immunoprecipitation (Co-IP) and shotgun LC-MS mass spectrometry identification. RESULTS: Immunohistochemistry indicated that GBAS was markedly overexpressed in OC compared with normal ovarian tissue and was associated with lymph node metastasis. Inhibition of GBAS expression can significantly reduce OC cell proliferation, colony formation, promote cell apoptosis, and reduce the ability of cell migration and invasion. In vivo tumor formation experiments showed that the size and weight of tumors in mice after GBAS expression knockdown was significantly smaller. Glioblastoma-amplified sequence may be combined with elongation factor 1 alpha 1 (eEF1A1) to achieve its regulation in OC. Bioinformatics analysis data indicate that GBAS may be a key regulator of mitochondria-associated pathways, therefore controlling cancer progression. MicroRNA-27b, MicroRNA-23a, and MicroRNA-590 may directly targeting GBAS affects the biological behavior of OC cells. CONCLUSION: The glioblastoma-amplified sequence may regulate the proliferation and metastasis of OC cells by combining with eEF1A1.


Subject(s)
Glioblastoma , MicroRNAs , Ovarian Neoplasms , Animals , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Mice , MicroRNAs/genetics , Ovarian Neoplasms/pathology , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism
20.
J Am Chem Soc ; 144(3): 1361-1369, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34937344

ABSTRACT

A series of poly(1,4-dihydropyridine)s (PDHPs) were successfully synthesized via one-pot metal-free multicomponent polymerization of diacetylenic esters, benzaldehyde, and aniline derivatives. These PDHPs without traditional luminescent units were endowed with tunable triplet energy levels by through-space conjugation from the formation of different cluster sizes. The large and compact clusters can effectively extend the phosphorescence wavelength. The triplet excitons can be stabilized by using benzophenone as a rigid matrix to achieve room-temperature phosphorescence. The nonconjugated polymeric clusters can show a phosphorescence emission up to 645 nm. A combination of static and dynamic laser light scattering was conducted for insight into the structural information on formed clusters in the host matrix melt. Moreover, both the fluorescence and phosphorescence emission can be easily tuned by the variation of the excitation wavelength, the concentration, and the molecular weight of the guest polymers. This work provides a unique insight for designing polymeric host-guest systems and a new strategy for the development of long wavelength phosphorescence materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...