Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(3)2022 01 23.
Article in English | MEDLINE | ID: mdl-35159191

ABSTRACT

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Of the four molecular subgroups, Group 3 MB is the most aggressive and has the worst prognosis. To understand the origins of chemoresistance involving IL-6/STAT3 signaling, we used in vitro co-culture systems to investigate the contribution of microglia as a brain tumor microenvironment cellular source of paracrine cytokines that promotes acquired drug resistance in Group 3 MB. MB cells subjected to co-culture with microglia exhibited increased expression of phosphorylated JAK1 and STAT3, which was correlated with enhanced resistance to vincristine. We found that both microglia and MB cells co-cultured with microglia secreted significant quantities of IL-6, indicating that IL-6 is a paracrine and autocrine cytokine able to initiate and sustain STAT3 activity in MB cells. Surprisingly, IL-6R-/- MB cells, which cannot respond to exogenous IL-6 stimuli, were responsive to microglia co-culture induced activation of STAT3 and chemoresistance. Subsequently, we found that MB cells conditioned in vitro with the IL-6 family cytokines, IL-6, OSM, LIF, or IL-11, exhibited enhanced JAK1/STAT3 activity and chemoresistance. Intriguingly, MB cells conditioned with any one of the IL-6 family cytokine secreted multiple IL-6 family cytokines, implicating a feedback network involving multiple cytokines. The IL-6 family cytokine receptors share a common signal transducing ß-subunit, gp130, which may be targeted to mitigate tumor chemoresistance. We showed that microglia co-culture failed to induce chemoresistance of gp130-/- MB cells, and that combination treatment using gp130 inhibitors, or with the JAK inhibitor ruxolitinib, effectively overcame the observed resistance to vincristine in gp130 expressing MB cells. Our in vitro studies highlight the gp130/JAK/STAT pathway as a therapeutic target in combating acquired treatment resistance in Group 3 MB.


Subject(s)
Cerebellar Neoplasms , Cytokine Receptor gp130 , Medulloblastoma , STAT3 Transcription Factor , Tumor Microenvironment , Cerebellar Neoplasms/drug therapy , Cytokine Receptor gp130/metabolism , Cytokines/metabolism , Drug Resistance, Neoplasm , Humans , Interleukin-6/metabolism , Janus Kinases/metabolism , Medulloblastoma/drug therapy , STAT3 Transcription Factor/metabolism , Signal Transduction , Tumor Cells, Cultured , Vincristine/pharmacology
2.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L377-L391, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34105356

ABSTRACT

Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-ß1 (TGF-ß1). To determine the role of FAM13A in TGF-ß1 signaling, FAM13A-/- airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles. Wild-type (WT) and FAM13A-/- cells were treated with TGF-ß1, followed by gene and/or protein expression analyses. FAM13A-/- cells augmented TGF-ß1-induced increase in collagen type 1 (COL1A1), matrix metalloproteinase 2 (MMP2), expression compared with WT cells. This effect was mediated by an increase in ß-catenin (CTNNB1) expression in FAM13A-/- cells compared with WT cells after TGF-ß1 treatment. FAM13A overexpression was partially protective from TGF-ß1-induced COL1A1 expression. Finally, we showed that airway epithelial-specific FAM13A protein expression is significantly increased in patients with severe COPD compared with control nonsmokers, and negatively correlated with lung function. In contrast, ß-catenin (CTNNB1), which has previously been linked to be regulated by FAM13A, is decreased in the airway epithelium of smokers with COPD compared with non-COPD subjects. Together, our data showed that FAM13A may be protective from TGF-ß1-induced fibrotic response in the airway epithelium via sequestering CTNNB1 from its regulation on downstream targets. Therapeutic increase in FAM13A expression in the airway epithelium of smokers at risk for COPD, and those with mild COPD, may reduce the extent of airway tissue remodeling.


Subject(s)
Airway Remodeling , GTPase-Activating Proteins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/metabolism , Smoking/metabolism , Transforming Growth Factor beta1/metabolism , Adult , Aged , Cell Line , Collagen Type I/biosynthesis , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Female , GTPase-Activating Proteins/genetics , Gene Expression Regulation , Humans , Male , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 2/genetics , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/pathology , Smoking/genetics , Smoking/pathology , Transforming Growth Factor beta1/genetics , beta Catenin/biosynthesis , beta Catenin/genetics
3.
Mol Biol Cell ; 32(7): 567-578, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33566639

ABSTRACT

The ability of cancer cells to invade surrounding tissues requires degradation of the extracellular matrix (ECM). Invasive structures, such as invadopodia, form on the plasma membranes of cancer cells and secrete ECM-degrading proteases that play crucial roles in cancer cell invasion. We have previously shown that the protein tyrosine phosphatase alpha (PTPα) regulates focal adhesion formation and migration of normal cells. Here we report a novel role for PTPα in promoting triple-negative breast cancer cell invasion in vitro and in vivo. We show that PTPα knockdown reduces ECM degradation and cellular invasion of MDA-MB-231 cells through Matrigel. PTPα is not a component of TKS5-positive structures resembling invadopodia; rather, PTPα localizes with endosomal structures positive for MMP14, caveolin-1, and early endosome antigen 1. Furthermore, PTPα regulates MMP14 localization to plasma membrane protrusions, suggesting a role for PTPα in intracellular trafficking of MMP14. Importantly, we show that orthotopic MDA-MB-231 tumors depleted in PTPα exhibit reduced invasion into the surrounding mammary fat pad. These findings suggest a novel role for PTPα in regulating the invasion of triple-negative breast cancer cells.


Subject(s)
Matrix Metalloproteinase 14/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 4/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Membrane , Cell Movement/physiology , Extracellular Matrix/physiology , Female , Humans , Matrix Metalloproteinase 14/physiology , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 4/physiology , Signal Transduction , Triple Negative Breast Neoplasms/physiopathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...