Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794480

ABSTRACT

Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize, this study utilized the susceptible temperate inbred line Ye107 as the male parent crossed with three resistant tropical maize inbred lines (CML312, D39, and Y32) to generate 627 F7 recombinant inbred lines (RILs), with the aim of identifying maize disease-resistant loci and candidate genes for common rust. Phenotypic data showed good segregation between resistance and susceptibility, with varying degrees of resistance observed across different subpopulations. Significant genotype effects and genotype × environment interactions were observed, with heritability ranging from 85.7% to 92.2%. Linkage and genome-wide association analyses across the three environments identified 20 QTLs and 62 significant SNPs. Among these, seven major QTLs explained 66% of the phenotypic variance. Comparison with six SNPs repeatedly identified across different environments revealed overlap between qRUST3-3 and Snp-203,116,453, and Snp-204,202,469. Haplotype analysis indicated two different haplotypes for CR resistance for both the SNPs. Based on LD decay plots, three co-located candidate genes, Zm00001d043536, Zm00001d043566, and Zm00001d043569, were identified within 20 kb upstream and downstream of these two SNPs. Zm00001d043536 regulates hormone regulation, Zm00001d043566 controls stomatal opening and closure, related to trichome, and Zm00001d043569 is associated with plant disease immune responses. Additionally, we performed candidate gene screening for five additional SNPs that were repeatedly detected across different environments, resulting in the identification of five candidate genes. These findings contribute to the development of genetic resources for common rust resistance in maize breeding programs.

2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339032

ABSTRACT

Tassel weight (TW) is a crucial agronomic trait that significantly affects pollen supply and grain yield development in maize breeding. To improve maize yield and develop new varieties, a comprehensive understanding of the genetic mechanisms underlying tassel weight is essential. In this study, tropical maize inbred lines, namely CML312, CML373, CML444, and YML46, were selected as female parents and crossed with the elite maize inbred line Ye107, which served as the common male parent, to develop a multi-parent population comprising four F8 recombinant inbred line (RIL) subpopulations. Using 6616 high-quality single nucleotide polymorphism (SNP) markers, we conducted genome-wide association analysis (GWAS) and genomic selection (GS) on 642 F8 RILs in four subpopulations across three different environments. Through GWAS, we identified 16 SNPs that were significantly associated with TW, encompassing two stable loci expressed across multiple environments. Furthermore, within the candidate regions of these SNPs, we discovered four novel candidate genes related to TW, namely Zm00001d044362, Zm00001d011048, Zm00001d011049, and Zm00001d031173 distributed on chromosomes 1, 3, and 8, which have not been previously reported. These genes are involved in processes such as signal transduction, growth and development, protein splicing, and pollen development, all of which play crucial roles in inflorescence meristem development, directly affecting TW. The co-localized SNP, S8_137379725, on chromosome 8 was situated within a 16.569 kb long terminal repeat retrotransposon (LTR-RT), located 22.819 kb upstream and 26.428 kb downstream of the candidate genes (Zm00001d011048 and Zm00001d011049). When comparing three distinct GS models, the BayesB model demonstrated the highest accuracy in predicting TW. This study establishes the theoretical foundation for future research into the genetic mechanisms underlying maize TW and the efficient breeding of high-yielding varieties with desired tassel weight through GS.


Subject(s)
Genome-Wide Association Study , Inflorescence , Inflorescence/genetics , Quantitative Trait Loci , Zea mays/genetics , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide
3.
Plants (Basel) ; 13(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38337988

ABSTRACT

Banded leaf and sheath blight (BLSB) in maize is a soil-borne fungal disease caused by Rhizoctonia solani Kühn, resulting in significant yield losses. Investigating the genes responsible for regulating resistance to BLSB is crucial for yield enhancement. In this study, a multiparent maize population was developed, comprising two recombinant inbred line (RIL) populations totaling 442 F8RILs. The populations were generated by crossing two tropical inbred lines, CML444 and NK40-1, known for their BLSB resistance, as female parents, with the high-yielding but BLSB-susceptible inbred line Ye107 serving as the common male parent. Subsequently, we utilized 562,212 high-quality single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) for a comprehensive genome-wide association study (GWAS) aimed at identifying genes responsible for BLSB resistance. The objectives of this study were to (1) identify SNPs associated with BLSB resistance through genome-wide association analyses, (2) explore candidate genes regulating BLSB resistance in maize, and (3) investigate pathways involved in BLSB resistance and discover key candidate genes through Gene Ontology (GO) analysis. The GWAS analysis revealed nineteen SNPs significantly associated with BLSB that were consistently identified across four environments in the GWAS, with phenotypic variation explained (PVE) ranging from 2.48% to 11.71%. Screening a 40 kb region upstream and downstream of the significant SNPs revealed several potential candidate genes. By integrating information from maize GDB and the NCBI, we identified five novel candidate genes, namely, Zm00001d009723, Zm00001d009975, Zm00001d009566, Zm00001d009567, located on chromosome 8, and Zm00001d026376, on chromosome 10, related to BLSB resistance. These candidate genes exhibit association with various aspects, including maize cell membrane proteins and cell immune proteins, as well as connections to cell metabolism, transport, transcriptional regulation, and structural proteins. These proteins and biochemical processes play crucial roles in maize defense against BLSB. When Rhizoctonia solani invades maize plants, it induces the expression of genes encoding specific proteins and regulates corresponding metabolic pathways to thwart the invasion of this fungus. The present study significantly contributes to our understanding of the genetic basis of BLSB resistance in maize, offering valuable insights into novel candidate genes that could be instrumental in future breeding efforts to develop maize varieties with enhanced BLSB resistance.

4.
PLoS One ; 18(3): e0278469, 2023.
Article in English | MEDLINE | ID: mdl-36928663

ABSTRACT

The increasing prominence of urban scaling laws highlights the importance of a systematic understanding of the variational scaling rates for different economic activities. In this article, we utilize several datasets to provide the first systematic investigation of the urban scaling of manufacturing industries in China. Most existing literature assumes that the divergence in urban scaling can be explained by returns to agglomeration, with a few exceptions instead highlighting the role of knowledge complexity or a mixture of both. Our main purpose in this paper is to explain the inter-sector variation of urban scaling rates. In doing this, we provide a clearer approach to demonstrating the relations between urban scaling, returns to agglomeration, and knowledge complexity. Our findings are twofold. First, after uncovering the scaling rates (denoted as urban concentration) and returns to agglomeration (denoted as urban productivity) for each sub-manufacturing sector, we prove that, rather than being a positive predictor, returns to agglomeration is slightly negatively associated with urban scaling rates. This finding reveals that urban concentration of manufacturing may not simply be a natural consequence driven by the maximization of performance. We also show that this result of the manufacturing system contrasts with what would be found in other pure knowledge systems such as patents. Secondly, we measure the complexity for each sector and demonstrate that the variation of urban concentration can be largely explained by their complexity, consistent with the knowledge complexity perspective. Specifically, complex manufacturing sectors are found to concentrate more in large cities than less complex sectors in China. This result provides support for the view that the growth of complex activities hinges more on diversity than on efficiency. The findings above can greatly reduce the current level of ambiguity associated with urban scaling, returns to agglomeration and complexity, and have important policy implications for urban planners, highlighting the significance of a more balanced and diversified configuration of urban productive activities for the growth of innovation economy.


Subject(s)
Commerce , Manufacturing Industry , Cities , China , Economic Development
5.
Genes (Basel) ; 15(1)2023 12 21.
Article in English | MEDLINE | ID: mdl-38275597

ABSTRACT

In this study, hotspot regions, QTL clusters, and candidate genes for eight ear-related traits of maize (ear length, ear diameter, kernel row number, kernel number per row, kernel length, kernel width, kernel thickness, and 100-kernel weight) were summarized and analyzed over the past three decades. This review aims to (1) comprehensively summarize and analyze previous studies on QTLs associated with these eight ear-related traits and identify hotspot bin regions located on maize chromosomes and key candidate genes associated with the ear-related traits and (2) compile major and stable QTLs and QTL clusters from various mapping populations and mapping methods and techniques providing valuable insights for fine mapping, gene cloning, and breeding for high-yield and high-quality maize. Previous research has demonstrated that QTLs for ear-related traits are distributed across all ten chromosomes in maize, and the phenotypic variation explained by a single QTL ranged from 0.40% to 36.76%. In total, 23 QTL hotspot bins for ear-related traits were identified across all ten chromosomes. The most prominent hotspot region is bin 4.08 on chromosome 4 with 15 QTLs related to eight ear-related traits. Additionally, this study identified 48 candidate genes associated with ear-related traits. Out of these, five have been cloned and validated, while twenty-eight candidate genes located in the QTL hotspots were defined by this study. This review offers a deeper understanding of the advancements in QTL mapping and the identification of key candidates associated with eight ear-related traits. These insights will undoubtedly assist maize breeders in formulating strategies to develop higher-yield maize varieties, contributing to global food security.


Subject(s)
Quantitative Trait Loci , Zea mays , Zea mays/genetics , Plant Breeding , Chromosome Mapping/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...