Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 7(3): 715-732, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30762040

ABSTRACT

The existence of challenging diseases such as cancers, HIV and Zika requires developing new vaccines that can generate tunable and robust immune responses against the diseases. Biomaterials-based techniques have been broadly explored for designing vaccines that can produce controllable and potent immunity. Among the existing biomaterials-based strategies, the layer-by-layer (LbL) assembly technique is remarkably attractive in vaccine design due to its unique features such as programmed and versatile cargo loading, cargo protection, co-delivery, juxtaposing of immune signals, etc. In this work, we reviewed the existing LbL-based vaccine design techniques for translational applications. Specifically, we discussed nanovaccines constructed by coating polyelectrolyte multilayers (PEMs) on nanoparticles, microcapsule vaccines assembled from PEMs, polyplex/complex vaccines condensed from charged materials and microneedle vaccines deposited with PEMs, highlighting the employment of these techniques to promote immunity against diseases ranging from cancers to infectious and autoimmune diseases (i.e., HIV, influenza, multiple sclerosis, etc.). Additionally, the review specifically emphasized using LbL-based vaccine technologies for tuning the cellular and molecular pathways, demonstrating the unique advantages presented by these vaccination strategies. These studies showed the versatility and potency of using LbL-based techniques for designing the next generation of biomaterials vaccines for translational purposes.


Subject(s)
Biocompatible Materials/chemistry , Vaccines/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/prevention & control , Biocompatible Materials/therapeutic use , Capsules/chemistry , Humans , Immunomodulation , Nanoparticles/chemistry , Neoplasms/immunology , Neoplasms/therapy , Peptides/chemistry , Peptides/immunology , Polyelectrolytes/chemistry
2.
Sci Rep ; 7: 44056, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272436

ABSTRACT

The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks.

3.
Rev Sci Instrum ; 79(6): 065104, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18601434

ABSTRACT

A flexible dual-channel curvilinear electromagnetic filter has been designed and constructed to fabricate multilayered composite films in vacuum arc ion plating. The filter possesses two guiding channels and one mixing unit. Multilayered TiN/AlN and TiAlN composite films can be produced by controlling the frequency or interval of the two cathodes. The x-ray photoelectron spectroscopy and low-angle x-ray diffraction results reveal the periodic Ti and Al structures in the TiN/AlN films. The TiAlN films exhibit a smooth surface morphology confirming effective filtering of macroparticles by the filter. High temperature oxidation conducted at 700 degrees C for an hour indicates that the weight increment in the TiAlN films produced by the dual filter is only half of that of the TiAlN films produced without a filter, thereby showing better resistance against surface oxidation.

4.
Rev Sci Instrum ; 78(9): 095103, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17902970

ABSTRACT

Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

SELECTION OF CITATIONS
SEARCH DETAIL
...