Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Heliyon ; 9(8): e18654, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554835

ABSTRACT

Gastric cancer is a prevalent malignancy with a high degree of heterogeneity, which has led to a poor therapeutic response. Though there are numerous HER2-targeted medicines for HER2+ gastric cancer, many trials have not indicated an improvement in overall survival. Here 29 ERBB2 amplification (ERBB2-Amp) type gastric cancer samples with WES and RNA-seq data were selected for investigation, which copy-number aberration (CNA) was +2. Initially, the somatic mutation and copy number variant (CNV) of them, which might cause resistance to HER2-targeted therapies, were systematically investigated evaluated, as well as their mutation signatures. Moreover, 37 modules were identified using weighted gene co-expression network analysis (WGCNA), including the blue module related to DFS status and lightcyan module correlated with ARHGAP26_ARHGAP6_CLDN18 rearrangement. In addition, focal adhesion and ECM-receptor interaction pathways were considerably enriched in the turquoise module with ERBB2 gene. ExportNetworkToCytoscape determined that MIEN1 and GRB7 are tightly connected to ERBB2., Finally, 14 single-cell intestinal gastric cancer samples were investigated, and it was shown that the TFAP2A transcription factor regulon was highly expressed in ERBB2high group, as was the EMT score. Overall, our data provide comprehensive molecular characteristics of ERBB2-Amp type gastric cancer, which offers additional information to improve HER2-targeted gastric cancer treatment.

2.
Materials (Basel) ; 13(8)2020 Apr 12.
Article in English | MEDLINE | ID: mdl-32290574

ABSTRACT

The chip is the core component of the integrated circuit. Degradation and failure of chip solder joints can directly lead to function loss of the integrated circuit. In order to establish the degradation model of chip solder joints under coupled stress, this paper takes quad flat package (QFP) chip solder joints as the study object. First, solder joint degradation data and failure samples were obtained through fatigue tests under coupled stress. Three types of micro failure modes of solder joints were obtained by scanning electron microscope (SEM) analysis and finite element model (FEM) simulation results. Second, the characterization of degradation data was obtained by the principal component of Mahalanobis distance (PCMD) algorithm. It is found that solder joint degradation is divided into three stages: strain accumulation stage, crack propagation stage, and failure stage. Later, Coffin-Manson model and Paris model were modified based on the PCMD health index and strain simulation. The function relationship between strain accumulation time, crack propagation time, and strain was determined, respectively. Solder joint degradation models at different degradation stage were established. Finally, through strain simulation, the models can predict the strain accumulation time and failure time effectively under each failure mode, and their prediction accuracy is above 85%.

3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 30(10): 1306-1310, 2016 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-29786215

ABSTRACT

OBJECTIVE: To review the recent progress in the application of three-dimensional digital technology in knee arthroplasty. METHODS: The relevant literature at home and abroad about the three-dimensional digital technology in the applications of knee arthroplasty in recent years was extensively reviewed. RESULTS: The three-dimensional digital technology can obtain arthroplasty knee morphology and biomechanics, and can estimate preoperative planning osteotomy and the sizes of prostheses, so it can guide knee arthroplasty precisely. CONCLUSIONS: Three-dimensional digital technology can reduce the operation error, improve the operation precision, and improve the effectiveness in knee arthroplasty.

SELECTION OF CITATIONS
SEARCH DETAIL
...