Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
1.
Heliyon ; 10(10): e30902, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826750

ABSTRACT

Background: Radiotherapy has become a standard treatment for chest tumors, but a common complication of radiotherapy is radiation lung injury. Currently, there is still a lack of effective treatment for radiation lung injury. Methods: A mouse model of radioactive lung injury (RILI) was constructed and then treated with different cycles of hydrogen inhalation. Lung function tests were performed to detect changes in lung function.HE staining was used to detect pathological changes in lung tissue. Immunofluorescence staining was used to detect the polarization of macrophages in lung tissue. Immunohistochemistry was used to detect changes in cytokine expression in lung tissues. Western Blot was used to detect the expression of proteins related to the NF-κB signalling pathway. Results: Lung function test results showed that lung function decreased in the model group and improved in the treatment group.HE staining showed that inflammatory response was evident in the model group and decreased in the treatment group. Immunohistochemistry results showed that the expression of pro-inflammatory factors was significantly higher in the model group, and the expression of pro-inflammatory factors was significantly higher in the treatment group. The expression of pro-inflammatory factors in the treatment group was significantly lower than that in the model group, and the expression of anti-inflammatory factors in the treatment group was higher than that in the model group. Immunofluorescence showed that the expression of M1 subtype macrophages was up-regulated in the model group and down-regulated in the treatment group. The expression of M2 subtype macrophages was up-regulated in the treatment group relative to the model group. Western Blot showed that P-NF-κB p65/NF-κB p65 was significantly increased in the model group, and P-NF-κB p65/NF-κB p65 was decreased in the treatment group. Conclusion: Hydrogen therapy promotes macrophage polarization from M1 to M2 subtypes by inhibiting the NF-κB signalling pathway, thereby attenuating the inflammatory response to radiation lung injury.

2.
Open Life Sci ; 19(1): 20220874, 2024.
Article in English | MEDLINE | ID: mdl-38840891

ABSTRACT

Lung cancer (LC) is regarded as a fatal cancer, and insulin-like growth factor 1 (IGF1) and its receptor (IGF1R) have been found to play a key role in regulating tumor glycolytic metabolism. The aim of this study is to investigate LC proliferation regulated by metabolite-mediated IGF1R lactylation. IGF1R was highly expressed in LC tissues and cells, and the effects of IGF1R on protein stability were inhibited by Lactate dehydrogenase A (LDHA) inhibition. Moreover, the tightness of IGF1R binding to IGF1 was also enhanced by exogenous lactic acid but suppressed by LDHA silencing, while cell viability and proliferation were promoted by over-expression of IGF1R. Exogenous lactic acid further exacerbated the effects of the IGF1R gene, while LDHA knocking down reduced the IGF1R-induced malignant behaviors. The IGF1R and exogenous lactic acid were also found to increase extracellular acidification rate (ECAR) and decrease oxygen consumption rate to regulate glycolysis, which was inhibited by LDHA deficiency in LC cells. The study concluded that IGF1R-mediated aggressive behaviors of LC cells were associated with higher levels of IGF1R lactylation. Moreover, lactic acid can improve the protein stability of the IGF1R oncogene, thus promoting glycolysis and generating lactic acid, forming a closed loop. Therefore, targeting IGF1R is envisaged to provide a novel strategy for developing therapeutic agents against LC.

4.
Diabetes Care ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861482

ABSTRACT

OBJECTIVE: To determine the association between maternal blood glucose patterns throughout pregnancy and neonatal amino acids and acylcarnitines. RESEARCH DESIGN AND METHODS: We conducted a prospective cohort study involving 11,457 singleton pregnant women without preexisting diabetes from the Beijing Birth Cohort Study, along with their neonates born between July 2021 and October 2022 in Beijing, China. Distinct maternal glucose trajectories were identified using a latent class model based on blood glucose levels across the three trimesters, and their association with neonatal circulating metabolites, including 11 amino acids and 33 acylcarnitines, was examined, adjusting for potential confounding factors. RESULTS: Three distinct groups of maternal glucose trajectories were identified: consistent normoglycemia (n = 8,648), mid-to-late gestational hyperglycemia (n = 2,540), and early-onset hyperglycemia (n = 269). Mid-to-late gestational hyperglycemia was associated with decreased levels of amino acids (alanine, arginine, ornithine, and proline) involved in the arginine and proline metabolism and urea cycle pathway, as well as increased levels of C4DC+C5-OH and decreased level of C6DC and C10:1. Early-onset hyperglycemia was associated with elevated levels of free acylcarnitine and C4DC+C5-OH and a decreased level of C10:1, involved in the fatty acid oxidation pathway. However, these associations were primarily observed in male neonates rather than in female neonates. CONCLUSIONS: Our findings revealed a significant link between maternal glucose trajectories throughout pregnancy and neonatal arginine and proline metabolism, urea cycle pathway, and fatty acid oxidation pathway. These results highlight the importance of maintaining optimal blood glucose levels throughout pregnancy to promote healthy neonatal metabolic outcomes.

5.
Sci Rep ; 14(1): 12251, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806615

ABSTRACT

Mesenchymal stem cells (MSCs) have demonstrated promising advantages in the therapies of many diseases, while its multi-directional differentiation potential and immunotoxicity are the major concerns hindered their clinical translation. In this study, human umbilical Mesenchymal stem cell (hUC-MSCs) were labeled with a near-infrared fluorescent dye DiR before infused into cynomolgus monkeys, and the amount of hUC-MSCs in the peripheral blood were dynamically estimated from 5 min to 28 days post a single administration at 3 × 106 cells/kg and 2 × 107 cells/kg intravenously. As results, some hUC-MSCs distributed to the whole body within 5 min, while most of the cells accumulate in the lungs along with the systemic blood circulation, and subsequently released into the blood. The toxicity potentials of hUC-MSCs were investigated in another 30 cynomolgus monkeys, and the cells were repeatedly administrated at doses of 3 × 106 cells/kg and 2 × 107 cells/kg for 5 times on a weekly basis, with a recovery period of 1 months. hUC-MSCs showed no obvious toxic effects in cynomolgus monkeys, except xenogeneic immune rejection to human stem cells. Low levels of the hUC-MSC gene were detected in the peripheral blood of a few animals administered 2 × 107 cells/kg at 30 min subsequent to the first and last administration, and there was no significant difference in the copy number of the hUC-MSC gene in the blood samples compared with the first and last administration, indicating that the hUC-MSC was not significantly amplified in vivo, and it its safe in non-human primates. Our study for the first time verified the safety of long-term use of hUC-MSCs in primates. We have pioneered a technology for the real-time detection of hUC-MSCs in peripheral blood and provide dynamicand rapid monitoring of the distribution characteristics of hUC-MSCs in vivo. Here, we provide data supporting the application of such products for clinical treatment and the application of stem cells in major refractory diseases and regenerative medicine.


Subject(s)
Macaca fascicularis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Umbilical Cord , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Umbilical Cord/cytology , Mesenchymal Stem Cell Transplantation/methods , Male , Cell Differentiation , Female
6.
Environ Sci Technol ; 58(21): 9125-9134, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743861

ABSTRACT

Halobenzoquinones (HBQs), an emerging unregulated category of disinfection byproduct (DBP) in drinking water, have aroused an increasing concern over their potential health risks. However, the chronic toxicity of HBQs at environmentally relevant concentrations remains largely unknown. Here, the occurrence and concentrations of 13 HBQs in drinking water from a northern megacity in China were examined using ultrahigh performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS). Four HBQs, including 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), were detected beyond 50% occurrence frequency and at median concentrations from 4 to 50 ng/L. The chronic toxicity of these four HBQs to normal human colon and liver cells (FHC and THLE-2) was investigated at these concentrations. After 90 days of exposure, 2,5-DBBQ and 2,6-DCBQ induced the highest levels of oxidative stress and deoxyribonucleic acid (DNA) damage in colon and liver cells, respectively. Moreover, 2,5-DBBQ and 2,6-DCBQ were also found to induce epithelial-mesenchymal transition (EMT) in normal human liver cells via the extracellular signal regulated kinase (ERK) signaling pathway. Importantly, heating to 100 °C (boiling) was found to efficiently reduce the levels of these four HBQs in drinking water. These results suggested that environmentally relevant concentrations of HBQs could induce cytotoxicity and genotoxicity in normal human cells, and boiling is a highly efficient way of detoxification for HBQs.


Subject(s)
Benzoquinones , Drinking Water , Water Pollutants, Chemical , Drinking Water/chemistry , Humans , Benzoquinones/toxicity , Water Pollutants, Chemical/toxicity , Tandem Mass Spectrometry , China
7.
Poult Sci ; 103(7): 103845, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38788486

ABSTRACT

Phage therapy is gaining momentum as an alternative to antibiotics in the treatment of salmonellosis caused by Salmonella. In this study, a novel Salmonella phage, vB_SalS_JNS02, was isolated successfully from poultry farms in Shandong, China. The biological characteristics of vB_SalS_JNS02 were analysed, which revealed a short latent period of approximately 10 min and a burst size of 110 PFU/cell. Moreover, vB_SalS_JNS02 exhibited remarkable stability across a wide pH range (pH 3-12) and temperatures ranging from 30 to 80°C. Genome sequencing analysis provided valuable insights into the genetic composition of vB_SalS_JNS02, which consists of a double-stranded DNA genome that spans 42,450 base pairs and has a G + C content of 49.4%. Of significant importance, the genomic sequence of vB_SalS_JNS02 did not contain any genes related to lysogenicity, virulence, or antibiotic resistance. The phage's efficacy was evaluated in a larval challenge study. Treatment with the phage resulted in increased survival of Galleria mellonella larvae (100, 70, and 85%) (MOI 0.1) in the prophylactic treatment, co-infection treatment, and remedial treatment experiments, respectively. Another in vivo experiment investigated the potential application of the phage in broiler chickens and revealed that a single oral dose of vB_SalS_JNS02 (108 PFU/mL, 100 µL/chick) administered 3 h after S. enteritidis oral administration provided effective protection. The introduction of bacteriophage not only enhances the production of secretory immunoglobulin A (sIgA), but also induces alterations in the composition of the gut microbial community. Phage therapy increases the relative abundance of beneficial bacteria, which helps to maintain intestinal barrier homeostasis. However, it is unable to fully restore the disrupted intestinal microbiome caused by S. enteritidis infection. Importantly, no significant adverse effects were observed in the animal subjects following oral administration of the phage, and our findings highlight vB_SalS_JNS02 is a hopeful candidate as a promising tool to target Salmonella infections in poultry.

8.
Virology ; 596: 110116, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788336

ABSTRACT

Peas (Pisum sativum L.) are widely cultivated in temperate regions and are susceptible hosts for various viruses across different families. The discovery and identification of new viruses in peas has significant implications for field disease management. Here, we identified a mixed infection of two viruses from field-collected peas exhibiting virus-like symptoms using metatranscriptome and small RNA sequencing techniques. Upon identification, one of the viruses was determined to be a newly isolated and discovered bymovirus from peas, named "pea bymovirus 1 (PBV1)". The other was identified as a novel variant of bean yellow mosaic virus (BYMV-HZ1). Subsequently, mechanical inoculation and RT-PCR assays confirmed that both viruses could be inoculated back onto peas and tobaccos, showing mixed infection by PBV1 and BYMV-HZ1. To our knowledge, this is the first isolation of a bymovirus from pea and the first documented case of mixed infection of peas by PBV1 and BYMV-HZ1 in China.


Subject(s)
Pisum sativum , Plant Diseases , RNA, Viral , Plant Diseases/virology , Pisum sativum/virology , RNA, Viral/genetics , Phylogeny , Coinfection/virology , China , Genome, Viral , Sequence Analysis, RNA , Transcriptome
9.
Quant Imaging Med Surg ; 14(5): 3544-3556, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720852

ABSTRACT

Background: Sudden cardiac death (SCD) represents the most severe complication of hypertrophic cardiomyopathy (HCM). The risk stratification of SCD in patients with HCM remains a subject of ongoing debate, and the utility of left atrial (LA) and left ventricular (LV) myocardial strain for risk stratification of also SCD remains uncertain. Through use of feature-tracking cardiac magnetic resonance (FT-CMR), this study aimed to investigate the attenuation of LA and LV strain in HCM and to assess their predictive value in SCD. Methods: This retrospective and cross-sectional study included patients with HCM who underwent 3.0 T cardiac magnetic resonance (CMR) at a single institution. Feature-tracking strain analysis was conducted to obtain the strain rate (SR) and LV strain and to evaluate LV function. LA strain was measured during different functional phases including left atrial reservoir strain (LARS), LA conduit strain (LACS), and LA booster strain. All patients were categorized into high- and low-risk groups for SCD as defined by the 2020 American Heart Association/American College HCM implantable cardioverter defibrillator class of recommendation algorithm. Comparison between the two groups was conducted using the independent samples t test and the nonparametric rank sum test. Multivariate logistic regression analysis was performed to further identify the factors influencing SCD risk in HCM. Results: Compared with those in the low-risk group, patients in the high-risk group had lower left ventricular ejection fraction (LVEF), LV stroke volume index (LVSVI), and LA stroke volume index (LASVI) but a higher LV end-systolic volume index (LVESVI), LV maximum wall thickness, and late gadolinium enhancement (LGE) (P<0.001). LV strain, SR, and LA strain all showed significant differences between the high- and low-risk groups (LARS: P=0.04; LACS: P=0.02; all other P values <0.001). The LV global circumferential strain (LVGCS) had a strong negative correlation with LVEF in patients with HCM (r=-0.76; P<0.001). Multivariate analysis showed that LV global radial strain (LVGRS) and LARS could be used for categorizing the patients into the high-risk group [LVGRS: odds ratio (OR) =0.69; 95% confidence interval (CI): 0.55-0.87, P<0.001; LARS: OR =1.39; 95% CI: 1.02-1.90, P=0.03]. The combined LVGRS-LARS model exhibited a superior diagnostic value for high risk of SCD [area under the curve (AUC) =0.95; 95% CI: 0.90-1.00; P<0.001] compared to LARS alone (AUC =0.63; 95% CI: 0.51-0.76; P=0.04). Conclusions: LA and LV strain measured by FT-CMR can accurately identify those patients with HCM at a high risk of SCD. This approach may prove considerably value in guiding early therapeutic intervention with implantable cardioverter-defibrillators (ICDs) to prevent adverse clinical outcomes.

11.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674363

ABSTRACT

The Homeodomain leucine zipper (HD-Zip) family of transcription factors is crucial in helping plants adapt to environmental changes and promoting their growth and development. Despite research on the HD-Zip family in various plants, studies in Lagerstroemia (crape myrtle) have not been reported. This study aimed to address this gap by comprehensively analyzing the HD-Zip gene family in crape myrtle. This study identified 52 HD-Zip genes in the genome of Lagerstroemia indica, designated as LinHDZ1-LinHDZ52. These genes were distributed across 22 chromosomes and grouped into 4 clusters (HD-Zip I-IV) based on their phylogenetic relationships. Most gene structures and motifs within each cluster were conserved. Analysis of protein properties, gene structure, conserved motifs, and cis-acting regulatory elements revealed diverse roles of LinHDZs in various biological contexts. Examining the expression patterns of these 52 genes in 6 tissues (shoot apical meristem, tender shoot, and mature shoot) of non-dwarf and dwarf crape myrtles revealed that 2 LinHDZs (LinHDZ24 and LinHDZ14) and 2 LinHDZs (LinHDZ9 and LinHDZ35) were respectively upregulated in tender shoot of non-dwarf crape myrtles and tender and mature shoots of dwarf crape myrtles, which suggested the important roles of these genes in regulate the shoot development of Lagerstroemia. In addition, the expression levels of 2 LinHDZs (LinHDZ23 and LinHDZ34) were significantly upregulated in the shoot apical meristem of non-dwarf crape myrtle. These genes were identified as key candidates for regulating Lagerstroemia plant height. This study enhanced the understanding of the functions of HD-Zip family members in the growth and development processes of woody plants and provided a theoretical basis for further studies on the molecular mechanisms underlying Lagerstroemia plant height.


Subject(s)
Gene Expression Regulation, Plant , Lagerstroemia , Leucine Zippers , Multigene Family , Plant Proteins , Genome, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lagerstroemia/genetics , Lagerstroemia/metabolism , Leucine Zippers/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Eur J Pharm Sci ; 197: 106767, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636781

ABSTRACT

Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.


Subject(s)
Histone Deacetylase Inhibitors , Immunity, Innate , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Humans , Cell Line, Tumor , Immunity, Innate/drug effects , Histone Deacetylase Inhibitors/pharmacology , Female , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Animals
13.
Am J Cardiol ; 222: 51-57, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38642869

ABSTRACT

Sudden cardiac death (SCD) represents the most severe complication of hypertrophic cardiomyopathy (HCM). However, the relation between strain, strain rate (SR), and risk factors in SCD risk stratification remains elusive. The study aimed to assess the attenuation of strain and SR in HCM by feature tracking cardiac magnetic resonance. All strain and SRs were obtained automatically by feature tracking, with manual adjustment of endocardial and epicardial borders. Strain indicators included left ventricular global longitudinal, circumferential, global radial strain (GRS), peak diastolic-longitudinal, circumferential, and radial SR. Patients were categorized into high-risk and low-risk groups for SCD based on the 2020 American Heart Association/American College HCM risk-SCD model. The correlation between strain/SR and SCD risk factors was assessed through Spearman correlation analysis. Furthermore, a multivariate logistic regression analysis was conducted to explore the factors that influence SCD risk in HCM patients. A total of 105 HCM patients were analyzed in this study, including 38 patients in the high-risk group, and 67 patients in the low-risk group. Compared with the low-risk group, the high-risk group exhibited significantly worse strain and SR (p <0.001). Furthermore, both circumferential and GRS and SR exhibited meaningful associations with risk factors for SCD. Additionally, GRS emerged as an independent risk factor for predicting heightened SCD risk in HCM patients (p <0.001). In conclusion, left ventricular strain and SR based on feature tracking-cardiac magnetic resonance can be evaluated for SCD risk and are strongly associated with SCD risk factors.


Subject(s)
Cardiomyopathy, Hypertrophic , Death, Sudden, Cardiac , Feasibility Studies , Magnetic Resonance Imaging, Cine , Humans , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/physiopathology , Male , Female , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Magnetic Resonance Imaging, Cine/methods , Middle Aged , Risk Factors , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Risk Assessment/methods , Adult , Ventricular Function, Left/physiology , Retrospective Studies
14.
Materials (Basel) ; 17(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38591606

ABSTRACT

Chemical foaming technology is widely used in the preparation of silicone rubber foam and is attributable to its one-step molding capability and eco-friendly production processes. The microrheological properties of silicone rubber play a pivotal role during the foaming process. In this study, Rheolaser Lab (Formulaction, Toulouse, France) was used to conduct in situ examinations for the influence of a crosslinking agent on the microrheological properties of silicone rubber foam for the first time. This study monitors the entire reaction process of silicone rubber foam from liquid to solid, as well as the matching of crosslinking and foaming reactions. Various parameters, including solid-liquid balance, elasticity index, and macroscopic viscosity index, are measured to analyze the microrheological properties of silicone rubber foam. The results show that the silicone rubber foam exhibits good microrheological properties, thereby demonstrating excellent performance at a crosslinking agent content of 2%. Through adjusting the experimental conditions, a sustainable and efficient approach was proposed for better cellular structure control in the industrial preparation of silicone rubber foam.

15.
Plants (Basel) ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38592914

ABSTRACT

Alfalfa (Medicago sativa L.) is an important forage crop worldwide, but molecular genetics and breeding research in this species are hindered by its self-incompatibility (SI). Although the mechanisms underlying SI have been extensively studied in other plant families, SI in legumes, including alfalfa, remains poorly understood. Here, we determined that self-pollinated pollen tubes could germinate on the stigma of alfalfa, grow through the style, and reach the ovarian cavity, but the ovules collapsed ~48 h after self-pollination. A transcriptomic analysis of dissected pistils 24 h after self-pollination identified 941 differently expressed genes (DEGs), including 784 upregulated and 157 downregulated genes. A gene ontology (GO) analysis showed that the DEGs were highly enriched in functions associated with the regulation of pollen tube growth and pollen germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that pentose and glucuronate interconversion, plant hormone signal transduction, the spliceosome, and ribosomes might play important roles in SI. Our co-expression analysis showed that F-box proteins, serine/threonine protein kinases, calcium-dependent protein kinases (CDPKs), bHLHs, bZIPs, and MYB-related family proteins were likely involved in the SI response. Our study provides a catalog of candidate genes for further study to understand SI in alfalfa and related legumes.

16.
Foodborne Pathog Dis ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38669052

ABSTRACT

Antimicrobial resistance (AMR) is a great threat to animal and public health. Here, we conducted a surveillance of Escherichia coli isolated from healthy chickens during 2009-2014 to identify the characteristics of AMR. A total of 351 (95.64%) E. coli isolates were obtained from 367 healthy chicken fecal samples collected from 6 farms located in Shandong Province, China. The susceptibility to 10 antimicrobials, the prevalence of antibiotic resistance genes (ARGs), phylogenetic clustering, and multilocus sequence typing were evaluated. The isolates exhibited high resistant rates (>95%) to ampicillin, cefotaxime, ciprofloxacin, ceftiofur, and enrofloxacin. The most prevalent ARGs were blaCTX-M (36.36%), aac(6')-Ib-cr (30.79%), qnrS (29.62%), oqxAB (27%), mcr-1 (15.83%), blaTEM (9.09%), qnrC (3.52%), qnrD (0.88%), and qepA (0.29%). Phylogenetic clustering analysis indicated that the most prevalent group was group D (37.89%), followed by group B1 (34.76%), A (24.22%), and B2 (3.13%). Fifty-seven sequence types (STs) were identified among the 124 blaCTX-M-positive strains, and the dominant STs were ST354 (13.71%), ST117 (5.65%), ST155, ST2309, and ST2505 (4.84% each). There was a significant association between 17 pairs of AMR phenotypes, 14 pairs of ARGs, and 11 pairs of AMR-ARGs. The strongest association was found between ST602 and qnrC (odds ratios: 22.2). This study implied that E. coli isolated from healthy chickens could potentially serve as a reservoir of AMR and ARGs, and significant associations exist among AMR, ARGs, phylogenetic groups, and STs. Our study highlighted the need for routine surveillance of AMR in healthy chickens, and promoting appropriate antibiotic use and implementing regular monitoring of resistance in broilers are crucial for fostering the development of the poultry industry and safeguarding public health.

17.
Trends Microbiol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38521726

ABSTRACT

Plants have developed very diverse strategies to defend themselves against viral pathogens, among which plant hormones play pivotal roles. In response, some viruses have also deployed multifunctional viral effectors that effectively hijack key component hubs to counter or evade plant immune surveillance. Although significant progress has been made toward understanding counter-defense strategies that manipulate plant hormone regulatory molecules, these efforts have often been limited to an individual virus or specific host target/pathway. This review provides new insights into broad-spectrum antiviral responses in rice triggered by key components of phytohormone signaling, and highlights the common features of counter-defense strategies employed by distinct rice-infecting RNA viruses. These strategies involve the secretion of multifunctional virulence effectors that target the sophisticated phytohormone system, dampening immune responses by engaging with the same host targets. Additionally, the review provides an in-depth exploration of various viral effectors, emphasizing tertiary structure-based research and shared host targets. Understanding these conserved characteristics in detail may pave the way for molecular drug design, opening new opportunities to enhance broad-spectrum antiviral trials through precise engineering.

18.
Chem Commun (Camb) ; 60(29): 3922-3925, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38501201

ABSTRACT

A systematic theoretical study probing the catalytic potential of metal-doped SnO2(110) was conducted. The incorporation of metals such as Zr, Ti, W, V, Hf, and Ge is shown to drive electron transfer to Sn. The increased charge of Sn is injected into anti-bonding orbitals, finely tuning the catalytic activity and reducing the overpotential to -0.34 V. AIMD simulations show the stability of the modified structures. This work sheds light on the rational design of low-cost metal oxides with a high catalytic performance for CO2ER to formate.

19.
Cell Death Discov ; 10(1): 143, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490978

ABSTRACT

The existing conventional treatments for breast cancer, including immune checkpoint blockade, exhibit limited effects in some cancers, particularly triple-negative breast cancer. Epigenetic alterations, specifically DNMT and HDAC alterations, are implicated in breast cancer pathogenesis. We demonstrated that DNMTs and HDACs are overexpressed and positively correlated in breast cancer. The combination of DNMT and HDAC inhibitors has shown synergistic antitumour effects, and our previously designed dual DNMT and HDAC inhibitor (termed DNMT/HDACi) 15a potently inhibits breast cancer cell proliferation, migration, and invasion and induces apoptosis in vitro and in vivo. Mechanistically, 15a induces a viral mimicry response by promoting the expression of endogenous retroviral elements in breast cancer cells, thus increasing the intracellular level of double-stranded RNA to activate the RIG-I-MAVS pathway. This in turn promotes the production of interferons and chemokines and augments the expression of interferon-stimulated genes and PD-L1. The combination of 15a and an anti-PD-L1 antibody had an additive effect in vivo. These findings indicate that this DNMT/HDACi has immunomodulatory functions and enhances the effectiveness of immune checkpoint blockade therapy. A novel dual DNMT and HDAC inhibitor induces viral mimicry, which induces the accumulation of dsRNA to activate tumoral IFN signalling and cytokine production to enhance the immune response in breast cancer.

20.
J Agric Food Chem ; 72(11): 5574-5584, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38468388

ABSTRACT

To explore the use of nonfood plant-derived secondary metabolites for plant protection, a series of ester derivatives for controlling the major migratory agricultural pests were obtained by structural modification of andrographolide, a labdane diterpenoid isolated from Andrographis paniculata. Compound Id showed good insecticidal activity against the fall armyworm Spodoptera frugiperda Smith. Compounds IIa (LC50: 0.382 mg/mL) and IIIc (LC50: 0.563 mg/mL), the acaricidal activities of which were, respectively, 13.1 and 8.9 times that of andrographolide (LC50: 4.996 mg/mL), exhibited strong acaricidal and control effects against Tetranychus cinnabarinus Boisduval. Against Aphis citricola Van der Goot, compounds IIIc and IVb displayed 3.9- and 3.7-fold pronounced aphicidal activity of andrographolide. Effects of compound Id on three protective enzymes (superoxide dismutase, peroxidase, and catalase) of S. frugiperda were also observed. The obvious differences of epidermal cuticle structures of mites treated with compound IIa were determined by scanning electron microscopy. Structure-activity relationships indicated that 14-ester derivatives of andrographolide showed potential insecticidal/acaricidal activities and can be further utilized as lead compounds.


Subject(s)
Acaricides , Biological Products , Diterpenes , Insecticides , Pesticides , Animals , Pesticides/chemistry , Molecular Structure , Biological Products/chemistry , Esters/chemistry , Insecticides/chemistry , Structure-Activity Relationship , Acaricides/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...