Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 24(1): 227, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741976

ABSTRACT

BACKGROUND: Functional alveolar regeneration is essential for the restoration of normal lung homeostasis after acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Lung is a relatively quiescent organ and a variety of stem cells are recruited to participate in lung repair and regeneration after lung tissue injury. However, there is still no effective method for promoting the proliferation of endogenous lung stem cells to promote repair and regeneration. METHODS: Using protein mass spectrometry analysis, we analyzed the microenvironment after acute lung injury. RNA sequencing and image cytometry were used in the alveolar epithelial type 2 cells (AEC2s) subgroup identification. Then we used Sftpc+AEC2 lineage tracking mice and purified AEC2s to further elucidate the molecular mechanism by which CTGF regulates AEC2s proliferation both in vitro and in vivo. Bronchoalveolar lavage fluid (BALF) from thirty ARDS patients who underwent bronchoalveolar lavage was collected for the analysis of the correlation between the expressing of Krt5 in BALF and patients' prognosis. RESULTS: Here, we elucidate that AEC2s are the main facultative stem cells of the distal lung after ALI and ARDS. The increase of connective tissue growth factor (CTGF) in the microenvironment after ALI promoted the proliferation of AEC2s subpopulations. Proliferated AEC2s rapidly expanded and differentiated into alveolar epithelial type 1 cells (AEC1s) in the regeneration after ALI. CTGF initiates the phosphorylation of LRP6 by promoting the interaction between Krt5 and LRP6 of AEC2s, thus activating the Wnt signaling pathway, which is the molecular mechanism of CTGF promoting the proliferation of AEC2s subpopulation. CONCLUSIONS: Our study verifies that CTGF promotes the repair and regeneration of alveoli after acute lung injury by promoting the proliferation of AEC2s subpopulation.


Subject(s)
Acute Lung Injury , Connective Tissue Growth Factor , Respiratory Distress Syndrome , Animals , Humans , Mice , Cell Proliferation , Connective Tissue Growth Factor/genetics , Pulmonary Alveoli , Regeneration
2.
Tohoku J Exp Med ; 260(1): 51-61, 2023 May 17.
Article in English | MEDLINE | ID: mdl-36823185

ABSTRACT

Type VI CRISPR-Cas13 is the only CRISPR system that can bind and cleave RNA without DNase activity. We used the newly discovered, smaller Cas13X.1 protein to construct an editing system in mammalian cells, aiming to break the delivery restrictions of CRISPR-Cas13 system in vivo and promote the application of Cas13X system in clinical therapy. We employed exogenous fluorescence reporter gene mCherry and endogenous gene transketolase (TKT) closely related to cancer cell metabolism as target genes to evaluate the Cas13X.1 system. The recombinant plasmids targeting exogenous gene mCherry and endogenous gene TKT were constructed based on Cas13X.1 backbone plasmid. The editing efficiency, protein expression level, downstream gene transcript level and safety of Cas13X.1 system were evaluated. Both TKT transcripts of endogenous genes and mCherry transcripts of exogenous genes were significantly degraded by Cas13X.1 system with a knockdown efficiency up to 50%. At the same time, Cas13X.1 down-regulated the expression of the corresponding protein level in the editing of transcripts. In addition, the transcripts of key metabolic enzymes related to TKT were also down-regulated synchronously, suggesting that the degradation of TKT transcripts by Cas13X.1 system affected the main metabolic pathways related to TKT. The morphology, RNA integrity and apoptosis of cells loaded with Cas13X.1 system were not affected. The Cas13X.1 system we constructed had strong RNA knockdown ability in mammalian cells with low cellular toxicity. Compared with other CRISPR-Cas13 systems, Cas13X.1 system with smaller molecular weight has more advantages in vivo delivery. The Cas13X.1 system targeting TKT transcripts also provides an alternative method for the study of anti-cancer therapy.


Subject(s)
Gene Editing , Neoplasms , Animals , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , RNA Editing , RNA/genetics , Mammals/genetics
3.
J Cosmet Dermatol ; 22(2): 661-668, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36237150

ABSTRACT

BACKGROUND: The endothelial-mesenchymal transition (EndMT) is an important mechanism in tissue regeneration and the development of organ fibrosis. Whether EndMT occurs in wound healing and scarring remains unknown. MATERIALS AND METHODS: The isolated cells from the normal dermal tissue and the wound tissue of mouse with full-thickness skin wound, and human scar tissue sections were performed with CD31/factorVII and α-SMA immunohistochemical staining and H and E staining. The ratio of factor VII or CD31/α-SMA double-positive cells in factor VII-positive cells was assessed in the isolated cells and in scar tissues. RESULTS: In this study, we found that approximately 27-60% of ECs coexpressed VII factor and α-SMA in the isolated cells from the wound tissues of mice, which was significantly higher than that of normal dermal tissue cells. Accordingly, the number of CD31/α-SMA double-positive cells in mouse wound tissue sections was also significantly more than that in normal dermal tissue sections. In scar tissues, in addition to high-density microvessels, a large number of proliferative ECs in scar strama and CD31/α-SMA double-positive cells were also found. Approximately 46.82 to 84.11% of ECs and 68.77 to 95.25% of myofibroblasts coexpressed VII factor and α-SMA, and these two values in hypertrophic scars were significantly higher than those in keloids. CONCLUSION: These results confirmed that ECs might contribute to the emergence of myofibroblasts in the wound and scar tissue via the process of EndMT.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Mice , Animals , Myofibroblasts/pathology , Factor VII , Wound Healing , Cicatrix, Hypertrophic/pathology
4.
Trends Biotechnol ; 40(11): 1326-1345, 2022 11.
Article in English | MEDLINE | ID: mdl-35595574

ABSTRACT

An ideal molecular diagnostic method should be sensitive, specific, low cost, rapid, portable, and easy to operate. Traditional nucleic acid detection methods based mainly on PCR technology have not only high sensitivity and specificity, but also some limitations, such as the need for expensive equipment and skilled technicians, being both time and labor intensive, and difficult to implement in some regions. However, with the continuous development of CRISPR-Cas technology and its application in molecular diagnosis, new approaches have been used for the construction of molecular diagnostic systems. In this review, we discuss recent advances in CRISPR-based molecular diagnostic technologies and highlight the revolution they bring to the field of molecular diagnostics.


Subject(s)
Gene Editing , Nucleic Acids , CRISPR-Cas Systems , Gene Editing/methods , Molecular Diagnostic Techniques/methods
5.
Precis Clin Med ; 4(3): 179-191, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34541453

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems (Cas) are efficient tools for targeting specific genes for laboratory research, agricultural engineering, biotechnology, and human disease treatment. Cas9, by far the most extensively used gene-editing nuclease, has shown great promise for the treatment of hereditary diseases, viral infection, cancers, and so on. Recent reports have revealed that some other types of CRISPR-Cas systems may also have surprising potential to join the fray as gene-editing tools for various applications. Despite the rapid progress in basic research and clinical tests, some underlying problems present continuous, significant challenges, such as editing efficiency, relative difficulty in delivery, off-target effects, immunogenicity, etc. This article summarizes the applications of CRISPR-Cas from bench to bedside and highlights the current obstacles that may limit the usage of CRISPR-Cas systems as gene-editing toolkits in precision medicine and offer some viewpoints that may help to tackle these challenges and facilitate technical development. CRISPR-Cas systems, as a powerful gene-editing approach, will offer great hopes in clinical treatments for many individuals with currently incurable diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...