Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(16): 6141-6150, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665525

ABSTRACT

Despite great progress in the active interfacing between various abiotic materials and living organisms, the development of a smart polymer matrix with modulated functionality of algae towards the application of green bioenergy is still rare. Herein, we design a thermally sensitive poly(N-isopropylacrylamide)-co-poly(butyl acrylate) with an LCST (ca. 25 °C) as a chassis, which could co-assemble with algal cells based on hydrophobic interaction to generate a new type of robust hybrid hydrogel living material. By modulating the temperature to 30 °C, the volume of the polymer matrix is shrunk by 9 times, which allows the formation of physical shading and metabolism changing of the algae, and then triggers the functionality switching of the algae from photosynthetic oxygen production to hydrogen production. By contrast, by decreasing the temperature to 20 °C, the hybrid living materials go into a sol state where the algae behave normally with photosynthetic oxygen production. In particular, due to the proliferation of the algae in living materials, a long-term and exponential enhancement in the amount of hydrogen produced is achieved. Overall, it is anticipated that our investigations could provide a new paradigm for the development of polymer/living organism-based hybrid living materials with synergistic functionality boosting green biomanufacturing.

2.
Biomacromolecules ; 24(12): 5749-5758, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37934168

ABSTRACT

Modulated membrane functionalization is a necessary and overarching step for hollow microcompartments toward their application as nanoreactors or artificial cells. In this study, we show a way to generate phospholipid hybrid proteinosomes that could show superposed virtues of liposomes and proteinosomes. In comparison to pure proteinosomes, both the membrane fluidity and permeability are improved obviously after forming the phospholipid hybrid proteinosomes. Specifically, the integration of phospholipids also endows the hybrid proteinosomes demonstrating a stepwise release of the encapsulants of FITC-dextran (70 and 150 kDa) triggered sequentially by phospholipase and protease, and then a modulated cascaded enzymatic reaction between two different populations of proteinosomes are achieved. Therefore, it is anticipated that such constructed phospholipid hybrid proteinosomes could be employed as an improved microcompartmental model for further advanced artificial cell design toward achieving logic signal communication within the various artificial cellular populations as well as potential applications in the field of microreactors.


Subject(s)
Artificial Cells , Phospholipids , Liposomes , Cholesterol , Permeability
3.
Chempluschem ; 86(7): 1021-1036, 2021 07.
Article in English | MEDLINE | ID: mdl-34286914

ABSTRACT

With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production. In the end, the explicit perspectives on the challenges and future directions in this burgeoning field are discussed.


Subject(s)
Bacteria/chemistry , Cadmium Compounds/chemistry , Carbon Dioxide/chemistry , Hydrogen/chemistry , Photosensitizing Agents/chemistry , Sulfides/chemistry , Electron Transport , Light , Oxidation-Reduction , Photosynthesis , Quantum Dots/chemistry , Semiconductors , Solar Energy , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...