Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 28(5): 2140-2151, 2019 May.
Article in English | MEDLINE | ID: mdl-30475718

ABSTRACT

Fractional interpolation is used to provide sub-pixel level references for motion compensation in the interprediction of video coding, which attempts to remove temporal redundancy in video sequences. Traditional handcrafted fractional interpolation filters face the challenge of modeling discontinuous regions in videos, while existing deep learning-based methods are either designed for a single quantization parameter (QP), only generating half-pixel samples, or need to train a model for each sub-pixel position. In this paper, we present a one-for-all fractional interpolation method based on a grouped variation convolutional neural network (GVCNN). Our method can deal with video frames coded using different QPs and is capable of generating all sub-pixel positions at one sub-pixel level. Also, by predicting variations between integer-position pixels and sub-pixels, our network offers more expressive power. Moreover, we perform specific measurements in training data generation to simulate practical situations in video coding, including blurring the down-sampled sub-pixel samples to avoid aliasing effects and coding integer pixels to simulate reconstruction errors. In addition, we analyze the impact of the size of blur kernels theoretically. Experimental results verify the efficiency of GVCNN. Compared with HEVC, our method achieves 2.2% in bit saving on average and up to 5.2% under low-delay P configuration.

2.
IEEE Trans Image Process ; 27(6): 2828-2841, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29570085

ABSTRACT

Low-light image enhancement methods based on classic Retinex model attempt to manipulate the estimated illumination and to project it back to the corresponding reflectance. However, the model does not consider the noise, which inevitably exists in images captured in low-light conditions. In this paper, we propose the robust Retinex model, which additionally considers a noise map compared with the conventional Retinex model, to improve the performance of enhancing low-light images accompanied by intensive noise. Based on the robust Retinex model, we present an optimization function that includes novel regularization terms for the illumination and reflectance. Specifically, we use norm to constrain the piece-wise smoothness of the illumination, adopt a fidelity term for gradients of the reflectance to reveal the structure details in low-light images, and make the first attempt to estimate a noise map out of the robust Retinex model. To effectively solve the optimization problem, we provide an augmented Lagrange multiplier based alternating direction minimization algorithm without logarithmic transformation. Experimental results demonstrate the effectiveness of the proposed method in low-light image enhancement. In addition, the proposed method can be generalized to handle a series of similar problems, such as the image enhancement for underwater or remote sensing and in hazy or dusty conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...