Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 824
Filter
1.
Heliyon ; 10(9): e30290, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720725

ABSTRACT

The objective of this study was to develop nanotechnology-mediated paclitaxel (PAC) and curcumin (CUR) co-loaded solid lipid nanoparticles (PAC-CUR-SLNs) for the treatment of lung cancer, which is a leading cause of death worldwide. Around 85 % cases of lungs cancer constitute non-small cell lung cancer (NSCLC). PAC-CUR-SLNs were prepared via high pressure homogenization. The in vitro drug release of PAC-CUR-SLNs was checked followed by their in vitro cytotoxic investigation using adenocarcinomic human alveolar basal epithelial cells (A549) cell lines. Anticancer effects along with side effects of the synergistic delivery of PAC-CUR-SLNs were studied in vivo, using BALB/c mice. PAC-CUR-SLNs were nano sized (190 nm), homogeneously disseminated particles with %IE of both PAC and CUR above 94 %. PAC-CUR-SLNs released PAC and CUR in a controlled fashion when compared with free drug suspensions. The cytotoxicity of PAC-CUR-SLNs was higher than individual drug-loaded SLNs and pure drugs. Moreover, the co-delivery displayed synergistic effect, indicating potential of PAC-CUR-SLNs in lung cancer treatment. In vivo tumor investigation of PAC-CUR-SLNs exhibited 12-fold reduced tumor volume and almost no change in body weight of BALB/c mice, when compared with the experimental groups including control group. The inhibition of tumor rate on day 28 was 82.7 % in the PAC-CUR-SLNs group, which was significantly higher than the pure drugs and monotherapies. It can be concluded that, encapsulating the co-loaded antitumor drugs like PAC-CUR in SLNs may help in improved targeting of the tumor with enhanced anticancer effect.

2.
Muscle Nerve ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775303

ABSTRACT

INTRODUCTION/AIMS: Previous studies have suggested that treatments targeting the neuromuscular junction (NMJ) may play a role in the treatment of amyotrophic lateral sclerosis (ALS). However, factors impacting repetitive nerve stimulation (RNS), a technique to evaluate NMJ function, have yet to be fully elucidated. We aimed to identify independent factors contributing to the decremental response of the accessory nerve and evaluated its value in ALS clinical practice. METHODS: A total of 626 patients who were diagnosed with ALS and underwent 3 Hz RNS tests on the accessory nerve were enrolled. Data on their clinical and electrophysiological indicators were divided into a training set (collected from June 2016 to December 2022) and a test set (collected from January to August 2023). Stepwise regression was used in independent variable selection and model building. RESULTS: Forty-two percent of patients had a decrement larger than 10% and 24% had a decrement larger than 15%. Onset age, sex, onset site, forced vital capacity (FVC) and motor unit potential (MUP) duration were independent factors contributing to the results of the RNS test. MUP duration had the greatest impact on decremental response, followed by FVC and onset age. The decremental response in females was larger than in males. Upper limb onset was found to contribute more to the decrement than lower limb or bulbar onset. DISCUSSION: In patients with ALS, NMJ safety factor is reduced during re-innervation. Decremental response is affected by multiple factors, which needs to be considered in clinical trials targeting the NMJ in these patients.

3.
DNA Cell Biol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38771249

ABSTRACT

Reg3A is upregulated in various cancers and considered a potential target for antitumor treatments. However, the effect of Reg3A in metastasis has been elusive. This study aims to disclose the role of Reg3A overexpression in hepatic metastasis of LoVo colon cancer cells. A stable cell line of LoVo cells overexpressing Reg3A (LoVo-luc-Reg3A), labeled with luc reporter gene, was constructed. Cell proliferation, apoptosis, migration, and invasion were determined using MTT, EdU, Hoechst's staining, flow cytometry, and transwell assays, respectively. Hepatic metastasis of LoVo-luc-Reg3A cells was investigated in BALB/c nude mice. Living bioluminescence imaging, histological examination, and mRNA sequencing (mRNA-seq) were performed to assess the metastatic efficiency and gene expression alteration. Reg3A content was determined by Western blotting and Enzyme-Linked Immunosorbent Assay. Cell attachment capacity was determined in the Matrigel culture. Reg3A overexpression did not promote LoVo cell proliferation or apoptosis, but facilitated cell migration and invasion. In the hepatic metastasis model, Reg3A overexpression increased the number of metastatic colonies. The result of mRNA-seq suggested 349 differentially expressed genes (DEGs) by Reg3A upregulation, many of which were related to colon adenocarcinoma tumorigenesis compared to normal colon tissue. Gene ontology enrichment assay indicated that the DEGs are mainly associated with cell adhesion, leukocyte regulation, extracellular matrix (ECM) remodeling, integrin binding, and STAT protein binding. Reg3A overexpression led to an enrichment of Reg3A protein in local tumor tissue of liver metastasis and ECM/intracellular space in ex vivo cultured cells. However, Reg3A concentration in serum and culture medium was relatively low. Reg3A overexpression also resulted in an increased number of cells that attach to Matrigel, which was attenuated by treatments of siRNA-Reg3A and single-chain variable fragment against Reg3A. Endogenous Reg3A overexpression facilitates hepatic metastasis of LoVo colon cancer cells. The prometastatic effect could be contributed by Reg3A enrichment in ECM, which alters the cell adhesion behavior.

4.
Cell Chem Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38821064

ABSTRACT

Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.

5.
Front Aging Neurosci ; 16: 1357070, 2024.
Article in English | MEDLINE | ID: mdl-38817347

ABSTRACT

Background: Obstructive sleep apnea (OSA) had a high prevalence in the population. Whether OSA increases the risk of amyotrophic lateral sclerosis (ALS) is unknown. Our aim was to clarify this issue using two-sample Mendelian randomization (MR) analysis in a large cohort. Methods: Two-sample MR was used to evaluate the potential causality between OSA and ALS by selecting single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) from genome-wide association studies (GWAS). The inverse-variance weighted (IVW) method was chosen as the primary method to estimate causal association. Weighted median, weighted mode and simple mode methods were used as sensitivity analyses to ensure the robustness of the results. Results: In MR analysis, IVW mode showed genetic liability to OSA was found to be significantly associated with a higher ALS risk (OR, 1.220; 95% confidence interval, 1.031-1.443; p = 0.021). No evidence of heterogeneity and horizontal pleiotropy were suggested. Conclusion: We found potential evidence for a causal effect of OSA on an increased risk of ALS.

6.
Neurol Res ; 46(7): 613-625, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810890

ABSTRACT

OBJECTIVES: Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults, yet there are currently no disease-modifying treatments. Disrupted miRNA expressions may lead to dysregulation of target mRNAs and dysfunction involved in DM1 pathogenic mechanism. METHODS: We used microarray platforms to examine the miRNA/mRNA expression profiles in skeletal muscle biopsies derived from DM1 patients and matched controls. Bioinformatics analysis and dual-luciferase reporter assay were conducted to provide insight into miRNA-mRNA regulatory networks altered in DM1. RESULTS: Twenty-three differentially expressed miRNAs and 135 differentially expressed genes were identified. qPCR confirmed that miR-3201, myogenic factor 5 (MYF5), myogenic differentiation 1 (MYOD1), CUGBP, Elav-like family member 1 (CELF1), and CELF2 were significantly up-regulated, while miR-196a, miR-200c, and miR-146a were significantly down-regulated. Enriched functions and pathways such as multicellular organismal development, RNA splicing, cell differentiation, and spliceosome are relevant to DM1. The miRNA-mRNA interaction network revealed that miR-182, miR-30c-2, and miR-200c were the critical nodes that potentially interacted with hub genes. Luciferase reporter assay confirmed the direct interaction between miR-196a and CELF2. CONCLUSION: Those results implied that the observed miRNA/mRNA dysregulation could contribute to specific functions and pathways related to DM1 pathogenesis, highlighting the dysfunction of miR-196a and CELF2.


Subject(s)
MicroRNAs , Muscle, Skeletal , Myotonic Dystrophy , RNA, Messenger , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Adult , Male , Female , Middle Aged , Gene Expression Profiling
7.
Sci Total Environ ; 939: 173224, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763187

ABSTRACT

Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.

8.
World J Oncol ; 15(3): 414-422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751702

ABSTRACT

Background: This study assessed clinical outcomes of three-dimensional-printed template (3DPT)-guided radioactive seed brachytherapy (RSBT) via a submental approach for recurrent base of tongue and floor of mouth cancer. Methods: Thirty-one patients with recurrent lingual and floor of mouth squamous cell carcinoma after surgery and radiotherapy were treated with 3DPT-guided RSBT from 2015 to 2022. Seeds were implanted through a submental approach guided by 3DPTs. Local control (LC), overall survival (OS), disease control (DC) and quality of life (QOL) were evaluated. Results: The median follow-up was 13.7 months. The 1-, 3- and 5-year LC rates were 66.1%, 66.1%, and 55.1% respectively. The 1-, 3- and 5-year OS rates were 63.4%, 33.4%, and 8.3%. The 1-, 3- and 5-year DC rates were 37.8%, 26.5%, and 21.2%. Univariate analysis showed tumor size significantly affected LC (P = 0.031). The presence of extraterritorial lesions affected DC and OS on multivariate analysis (P < 0.01). QOL improved significantly in domains of pain, swallowing, chewing, taste, and emotion after treatment compared to baseline. Four patients (13%) developed necrosis and osteoradionecrosis. Conclusions: 3DPT-guided submental RSBT provided favorable LC and QOL for recurrent tongue/floor of mouth cancer with minimal toxicity; moreover, severe toxicity should be noted.

9.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572590

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Exosomes , Mesenchymal Stem Cells , Humans , Rats , Animals , Diabetic Nephropathies/metabolism , Exosomes/metabolism , Smoothened Receptor , Hedgehog Proteins/metabolism , Fibrosis , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Diabetes Mellitus/metabolism
10.
Heliyon ; 10(8): e29556, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644875

ABSTRACT

Objective: Long-term alcohol consumption can cause organic damage to the brain, resulting in mental and nervous system abnormalities and intellectual impairment. Huanglian Jiedu decoction (HLJDD) is the classic representative of clearing heat and detoxifying. This study aimed to explore the effects and possible mechanisms of HLJDD on brain injury in chronic alcohol-exposed mice. Methods: The alcohol-exposed mice were treated with different doses of HLJDD to observe behavioral changes, hippocampal Aß1-42 deposition, number and ultrastructural changes of neurons in the hippocampus and prefrontal cortex, and expressions of synaptic proteins. On this basis, transcriptome sequencing was used to analyze the differentially expressed genes in different treatment groups, and functional enrichment analysis was performed. Then, WB and RT-PCR were used to verify the expression of the pathway. Results: Chronic alcohol exposure reduced body weight in mice, led to motor cognitive impairment, increased Aß1-42 in the hippocampus, decreased the number of neurons in the hippocampus and prefrontal cortex, and the expression of PSD95 and SYN in the hippocampus. HLJDD significantly improved the cognitive dysfunction of mice and alleviated the damage of the hippocampus and prefrontal cortex. Transcriptome sequencing results showed that the regulatory effects of HLJDD on chronic alcohol-exposed mice may be related to the RAS pathway. Further experiments confirmed that chronic alcohol exposure caused a significant increase in protein and gene expressions of the RAS-RAF-MEK-ERK pathway in mouse, and this activation was reversed by HLJDD. Conclusion: HLJDD may ameliorate brain damage caused by chronic alcohol exposure by regulating the RAS-RAF-MEK-ERK pathway.

11.
Front Immunol ; 15: 1360527, 2024.
Article in English | MEDLINE | ID: mdl-38601155

ABSTRACT

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which leads to muscle weakness and eventual paralysis. Numerous studies have indicated that mitophagy and immune inflammation have a significant impact on the onset and advancement of ALS. Nevertheless, the possible diagnostic and prognostic significance of mitophagy-related genes associated with immune infiltration in ALS is uncertain. The purpose of this study is to create a predictive model for ALS using genes linked with mitophagy-associated immune infiltration. Methods: ALS gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Univariate Cox analysis and machine learning methods were applied to analyze mitophagy-associated genes and develop a prognostic risk score model. Subsequently, functional and immune infiltration analyses were conducted to study the biological attributes and immune cell enrichment in individuals with ALS. Additionally, validation of identified feature genes in the prediction model was performed using ALS mouse models and ALS patients. Results: In this study, a comprehensive analysis revealed the identification of 22 mitophagy-related differential expression genes and 40 prognostic genes. Additionally, an 18-gene prognostic signature was identified with machine learning, which was utilized to construct a prognostic risk score model. Functional enrichment analysis demonstrated the enrichment of various pathways, including oxidative phosphorylation, unfolded proteins, KRAS, and mTOR signaling pathways, as well as other immune-related pathways. The analysis of immune infiltration revealed notable distinctions in certain congenital immune cells and adaptive immune cells between the low-risk and high-risk groups, particularly concerning the T lymphocyte subgroup. ALS mouse models and ALS clinical samples demonstrated consistent expression levels of four mitophagy-related immune infiltration genes (BCKDHA, JTB, KYNU, and GTF2H5) with the results of bioinformatics analysis. Conclusion: This study has successfully devised and verified a pioneering prognostic predictive risk score for ALS, utilizing eighteen mitophagy-related genes. Furthermore, the findings indicate that four of these genes exhibit promising roles in the context of ALS prognostic.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Mice , Humans , Amyotrophic Lateral Sclerosis/genetics , Mitophagy/genetics , Computational Biology , Databases, Factual , Disease Models, Animal
12.
Zhongguo Gu Shang ; 37(4): 381-6, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38664209

ABSTRACT

OBJECTIVE: CT scans combined with Mimics software were used to measure femoral offset (FO), rotation center height (RCH) and lower leg length discrepancy (LLD) following total hip arthroplasty (THA), and the relationship between FO, RCH and LLD after THA is discussed. METHODS: Retrospective analysis was performed on 40 patients with unilateral THA who met standard cases from October 2020 to June 2022. There were 21 males and 19 females, 18 patients on the left side and 22 patients on the right side, aged range from 30 to 81 years old, with an average age of (58.90 ±14.13) years old, BMI ranged from 17.3 to 31.5 kg·m-2 with an average of (25.3±3.4) kg·m-2. There were 30 cases of femoral head necrosis (Ficat type Ⅳ), 2 cases of hip osteoarthritis (Tönnis type Ⅲ), 2 cases of developmental hip dislocation combined with end-stage osteoarthritis (Crowe type Ⅲ), and 6 cases of femoral neck fracture (Garden type Ⅳ). Three-dimensional CT reconstruction of pelvis was taken preoperative and postoperative, and three-dimensional reconstruction model was established after processing by Mimics software. FO, RCH and LLD were measured on the model. The criteria for FO reconstruction were as follows:postoperative bilateral FO difference less than 5 mm;the standard for equal length of both lower limbs was as follows:postoperative LLD difference less than 5 mm. RESULTS: Bilateral FO difference was positively correlated with LLD (r=0.744, P<0.001). Chi-square test was performed between the FO reconstructed group and the non-reconstructed eccentricity group:The results showed that the isometric ratio of lower limbs in the FO reconstructed group was significantly higher than that in the FO reconstructed group (χ2=6.320, P=0.012). The bilateral RCH difference was significantly negatively correlated with LLD(r=-0.877, P<0.001). There is a linear relationship between bilateral FO difference and bilateral RCH difference and postoperative LLD, and the linear regression equation is satisfied:postoperative LLD=0.038x-0.099y+0.257(x:postoperative bilateral FO difference, y:postoperative bilateral RCH difference; Unit:cm), F=77.993, R2=0.808, P=0.009. CONCLUSION: After THA, LLD increased with the increase of FO and decreased with the increase of RCH. The effect of lower limb isometric length can be obtained more easily by reconstruction of FO. There is a linear relationship between the bilateral FO difference and the bilateral RCH difference after THA and LLD, and the regression equation can provide a theoretical reference for judging LLD.


Subject(s)
Arthroplasty, Replacement, Hip , Femur , Leg Length Inequality , Humans , Male , Female , Leg Length Inequality/etiology , Aged , Middle Aged , Arthroplasty, Replacement, Hip/methods , Aged, 80 and over , Retrospective Studies , Adult , Femur/surgery , Tomography, X-Ray Computed , Rotation , Osteoarthritis, Hip/surgery , Osteoarthritis, Hip/etiology
13.
Article in English | MEDLINE | ID: mdl-38664244

ABSTRACT

Acute lung injury (ALI) is a common disease with complex pathogenesis. However, the treatment is mainly symptomatic with limited clinical options. Asiaticoside (AS), a Chinese herbal extract, has protective effects against LPS-induced ALI in mice and inhibits nitric oxide and prostaglandin E2 synthesis; however, the specific mechanism of AS in the prevention and treatment of LPS-induced ALI needs further study. Sema4D/CD72 pathway, mitochondrial dysfunction, and miRNA-21 are closely associated with inflammation. Therefore, the present study aimed to explore whether AS exerts its therapeutic effect on ALI by influencing Sema4D/CD72 pathway and mitochondrial dysfunction, restoring the balance of inflammatory factors, and influencing miRNA-21 expression. Cell and animal experiments were performed to investigate the effect of AS on ALI. Lipopolysaccharide (LPS) was used to establish the ALI model. CCK8 and flow cytometry were used to detect the cell viability and apoptosis rate. HE staining and wet-to-dry weight ratio (W/D) of lung tissue were determined. The expressions of Sema4D, CD72, NF-κB p65, Bax, Bcl2, and caspase 3 in RAW264.7 cells and lung tissues were detected by western blot, and the levels of IL-10 and IL-1ß induced by LPS in supernatant of RAW264.7 cells and BALF were measured by ELISA. And the expression of miRNA-21 in cells and lung tissues was detected by fluorescence quantitative PCR. The result shows that AS treatment suppressed LPS-induced cell damage and lung injury in mice. AS treatment could alleviate the pathological changes such as inflammatory infiltration and histopathological changes in the lungs caused by LPS, and reduce the ratio of W/D. AS significantly alleviated the decrease of mitochondrial membrane potential induced by LPS, inhibited the increase of ROS production, and reduced the expression of mitochondrial fission proteins Drp1 and Fis1. The high-dose AS group significantly downregulated the expression of Sema4D, CD72, phosphorylated NF-κB p65, and apoptosis-related proteins, decreased the pro-inflammatory factor IL-1ß, and enhanced the level of anti-inflammatory factor IL-10. In addition, AS promoted miRNA-21 expression. These effects inhibited apoptosis and restored the balance between anti- and pro-inflammatory factors. This represents the inaugural report elucidating the mechanism by which AS inhibits the Sema4D/CD72 signaling pathway. These findings offer novel insights into the potential application of AS in both preventing and treating ALI.

14.
Nat Genet ; 56(5): 992-1005, 2024 May.
Article in English | MEDLINE | ID: mdl-38649710

ABSTRACT

Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas.


Subject(s)
Domestication , Genome, Plant , Quantitative Trait Loci , Selection, Genetic , Vigna , Vigna/genetics , Plant Breeding/methods , Phenotype , Genomics/methods , Seeds/genetics , Crops, Agricultural/genetics , Polymorphism, Single Nucleotide , Genetic Variation
15.
J Mater Chem B ; 12(14): 3509-3520, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38516824

ABSTRACT

Both chemodynamic therapy and photodynamic therapy, based on the production of reactive oxygen (ROS), have excellent potential in cancer therapy. However, the abnormal redox homeostasis in tumor cells, especially the overexpressed glutathione (GSH) could scavenge ROS and reduce the anti-tumor efficiency. Therefore, it is essential to develop a simple and effective tumor-specific drug delivery system for modulating the tumor microenvironment (TME) and achieving synergistic therapy at the tumor site. In this study, self-assembled nanoparticles (named CDZP NPs) were developed using copper ion (Cu2+), doxorubicin (Dox), zinc phthalocyanine (ZnPc) and a trace amount of poly(2-(di-methylamino)ethylmethacrylate)-poly[(R)-3-hydroxybutyrate]-poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA-PHB-PDMAEMA) through chelation, π-π stacking and hydrophobic interaction. These triple factor-responsive (pH, laser and GSH) nanoparticles demonstrated unique advantages through the synergistic effect. Highly controllable drug release ensured its effectiveness at the tumor site, Dox-induced chemotherapy and ZnPc-mediated fluorescence (FL) imaging exhibited the distribution of nanoparticles. Meanwhile, Cu2+-mediated GSH-consumption not only reduced the intracellular ROS elimination but also produced Cu+ to catalyze hydrogen peroxide (H2O2) and generated hydroxyl radicals (˙OH), thereby enhancing the chemodynamic and photodynamic therapy. Herein, this study provides a green and relatively simple method for preparing multifunctional nanoparticles that can effectively modulate the TME and improve synergetic cancer therapy.


Subject(s)
Methacrylates , Methylmethacrylates , Nanoparticles , Neoplasms , Nylons , Humans , Copper/therapeutic use , Reactive Oxygen Species , Hydrogen Peroxide/therapeutic use , Nanoparticles/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Glutathione/chemistry , Oxidation-Reduction , Tumor Microenvironment
16.
J Clin Neurosci ; 122: 19-24, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432041

ABSTRACT

BACKGROUND: The geriatric nutritional risk index (GNRI) is a prognostic indicator for several diseases, meanwhile, nutrition and inflammation play important roles in the disease progression of amyotrophic lateral sclerosis (ALS). However, the association between the GNRI and ALS remains unknown. METHODS: 443 patients diagnosed with ALS were divided into two groups based on the GNRI levels. Associations between GNRI and survival time were analyzed using Kaplan-Meier curves and compared by the log-rank test. Univariate and multivariate analyses were used to assess their prognostic values for survival time. Spearman correlation analysis was used to evaluate the correlation coefficients between GNRI and other clinical variables. RESULTS: No significant differences were found in diagnostic delay between the two groups. The onset age and disease progression rate (DPR) were significantly lower in high GNRI group while forced vital capacity (FVC), revised version of the ALS functional rating scale (ALSFRS-R), serum albumin and body mass index (BMI) were significantly lower in low GNRI group. Lower GNRI levels were linked with shorter ALS patients' survival time by Kaplan-Meier curves. The univariate and multivariate analysis identified the onset age, gender, onset site, diagnostic delay, DRP and GNRI as predictors of survival time in patients with ALS. CONCLUSION: Nutritional status was closely corelated with ALS progression. The GNRI may be used as a potential prognostic indictor for ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Aged , Prognosis , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnosis , Delayed Diagnosis , Nutritional Status , Disease Progression , Risk Factors , Retrospective Studies
17.
J Ethnopharmacol ; 326: 117967, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431111

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (PF), the dried fruit of Psoralea corylifolia L., is a commonly used traditional medicine that has contributed to the treatment of orthopedic diseases for thousands of years in China. However, recent PF-related liver injury reports have drawn widespread attention regarding its potential hepatotoxicity risks. AIM OF THE STUDY: This study was aimed to evaluate the long-term efficacy and chronic toxicity of PF using a 26-week administration experiment on rats in order to simulate the clinical usage situation. MATERIALS AND METHODS: The PF aqueous extract was consecutively administrated to rats daily at dosages of 0.7, 2.0, and 5.6 g/kg (equivalent to 1-8 times the clinical doses for humans) for as long as 26 weeks. Samples were collected after 13, 26, and 32 weeks (withdrawal for 6 weeks) since the first administration. The chronic toxicity of PF was evaluated by conventional toxicological methods, and the efficacy of PF was evaluated by osteogenic effects in the natural growth process. RESULTS: In our experiments, only the H group (5.6 g/kg) for 26-week PF treatment demonstrated liver or kidney injury, which the injuries were reversible after 6 weeks of withdrawal. Notably, the PF treatment beyond 13 weeks showed significant benefits for bone growth and development in rats, with a higher benefit-risk ratio in female rats. CONCLUSIONS: PF displayed a promising benefit-risk ratio in the treatment and prevention of osteoporosis, a disease that lacks effective medicine so far. This is the first study to elucidate the benefit-risk balance associated with clinical dosage and long-term use of PF, thereby providing valuable insights for rational clinical use and risk control of PF.


Subject(s)
Drugs, Chinese Herbal , Fabaceae , Psoralea , Humans , Rats , Female , Animals , Fruit , Odds Ratio , Liver , Drugs, Chinese Herbal/toxicity
18.
Cancer Discov ; 14(6): 1106-1131, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38416133

ABSTRACT

Recent clinical trials have highlighted the limited efficacy of T cell-based immunotherapy in patients with glioblastoma (GBM). To better understand the characteristics of tumor-infiltrating lymphocytes (TIL) in GBM, we performed cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing with paired V(D)J sequencing, respectively, on TILs from two cohorts of patients totaling 15 patients with high-grade glioma, including GBM or astrocytoma, IDH-mutant, grade 4 (G4A). Analysis of the CD8+ TIL landscape reveals an enrichment of clonally expanded GZMK+ effector T cells in the tumor compared with matched blood, which was validated at the protein level. Furthermore, integration with other cancer types highlights the lack of a canonically exhausted CD8+ T-cell population in GBM TIL. These data suggest that GZMK+ effector T cells represent an important T-cell subset within the GBM microenvironment and may harbor potential therapeutic implications. SIGNIFICANCE: To understand the limited efficacy of immune-checkpoint blockade in GBM, we applied a multiomics approach to understand the TIL landscape. By highlighting the enrichment of GZMK+ effector T cells and the lack of exhausted T cells, we provide a new potential mechanism of resistance to immunotherapy in GBM. This article is featured in Selected Articles from This Issue, p. 897.


Subject(s)
CD8-Positive T-Lymphocytes , Glioblastoma , Lymphocytes, Tumor-Infiltrating , Humans , Glioblastoma/immunology , Glioblastoma/therapy , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Brain Neoplasms/immunology , Tumor Microenvironment/immunology
19.
Nanoscale ; 16(10): 5343-5351, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38375552

ABSTRACT

Asymmetric superhydrophobic structures with anisotropic wettability can achieve directional bouncing of droplets and thus can have applications in directional self-cleaning, liquid transportation, and heat transfer. To achieve convenient large-scale preparation of asymmetric superhydrophobic surfaces, inclined nanoforests are prepared in this work using a technique of competitive ablation polymerization, which allows the control of the inclined angles, diameters, and heights of the nanostructures. In this study, such asymmetric structures with the smallest dimension (230 nm diameter) known are achieved by a simple etching method to guide droplet unidirectional bouncing. With such nanoforests, the mechanism of droplet bouncing on their surface is investigated, and controllable droplet bouncing over a long distance is achieved using droplets with a low Weber number. The proposed structure has a promising future in directional self-cleaning, liquid transportation and heat transfer.

20.
Medicine (Baltimore) ; 103(8): e36897, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394497

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a common and recurrent inflammatory disease with strong genetic susceptibility. The abnormal production of chemokines plays an important role in the occurrence and development of AD. METHODS: A comprehensive online literature search was performed in databases of China National Knowledge Infrastructure, Wanfang, VIP China Science and Technology Journal Database, China Biomedical Literature Database, PubMed, Embase and Cochrane Library to retrieve relevant articles published from January 2000 to October 2022. The odds ratio (OR) with its 95% confidence interval (CI) was employed to calculate this relationship. RESULTS: A total of 7 studies were finally screened out, including 1316 AD patients and 1099 controls. There were 3 studies for CC chemokine ligand 5 (CCL5) polymorphisms, 2 for CCL11 polymorphisms, and 2 for CCL17 polymorphisms, respectively. The meta-analysis revealed a significant association between the CCL5 - 403G/A polymorphism and AD under the allelic model (A vs G: OR = 1.25, 95% CI = 1.02-1.52, P = .03), heterozygous model (AG vs GG: OR = 1.40, 95% CI = 1.08-1.80, P = .01) and dominant model (AA + AG vs GG: OR = 1.38, 95% CI = 1.08-1.76, P = .01) in a fixed-effect model. The allelic model (G vs C: OR = 1.46, 95% CI = 1.07-1.98, P < .01) and dominant model (GG + GC vs CC: OR = 1.74, 95% CI = 1.23-2.47, P < .001) of the CCL5 - 28C/G polymorphism were also associated with an increased risk of AD. However, this significant association was not found in other alleles and genotypes (P > .05). CONCLUSION: Our results show that the A allele, AG and AA + AG genotypes of the CCL5 - 403G/A polymorphism, the G allele and GG + GC genotype of the CCL5 - 28C/G polymorphism are risk factors for AD. Future studies with large population are still needed to further explore those correlations.


Subject(s)
Chemokine CCL11 , Chemokine CCL17 , Chemokine CCL5 , Dermatitis, Atopic , Humans , Chemokine CCL11/genetics , Chemokine CCL17/genetics , Chemokine CCL5/genetics , Dermatitis, Atopic/genetics , Genetic Predisposition to Disease , Genotype , Ligands , Polymorphism, Single Nucleotide , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...