Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Coron Artery Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767051

ABSTRACT

BACKGROUND: Previous reports have suggested that coronary computed tomography angiography (CCTA)-based radiomics analysis is a potentially helpful tool for assessing vulnerable plaques. We aimed to investigate whether coronary radiomic analysis of CCTA images could identify vulnerable plaques in patients with stable angina pectoris. METHODS: This retrospective study included patients initially diagnosed with stable angina pectoris. Patients were randomly divided into either the training or test dataset at an 8 : 2 ratio. Radiomics features were extracted from CCTA images. Radiomics models for predicting vulnerable plaques were developed using the support vector machine (SVM) algorithm. The model performance was assessed using the area under the curve (AUC); the accuracy, sensitivity, and specificity were calculated to compare the diagnostic performance using the two cohorts. RESULTS: A total of 158 patients were included in the analysis. The SVM radiomics model performed well in predicting vulnerable plaques, with AUC values of 0.977 and 0.875 for the training and test cohorts, respectively. With optimal cutoff values, the radiomics model showed accuracies of 0.91 and 0.882 in the training and test cohorts, respectively. CONCLUSION: Although further larger population studies are necessary, this novel CCTA radiomics model may identify vulnerable plaques in patients with stable angina pectoris.

2.
Insect Sci ; 31(2): 417-434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37464946

ABSTRACT

Mythimna separata is a notorious phytophagous pest which poses serious threats to cereal crops owing to the gluttony of the larvae. Because short neuropeptide F (sNPF) and its receptor sNPFR are involved in a diversity of physiological functions, especially in functions related to feeding in insects, it is a molecular target for pest control. Herein, an sNPF and 2 sNPFRs were identified and cloned from M. separata. Bioinformatics analysis revealed that the sNPF and its receptors had a highly conserved RLRFamide C-terminus and 7 transmembrane domains, respectively. The sNPF and its receptor genes were distributed across larval periods and tissues, but 2 receptors had distinct expression patterns. The starvation-induced assay elucidated that sNPF and sNPFR expression levels were downregulated under food deprivation and recovered with subsequent re-feeding. RNA interference knockdown of sNPF, sNPFR1, and sNPFR2 by injection of double-stranded RNA into larvae not only suppressed food consumption and increased body size and weight, but also led to decrease of glycogen and total lipid contents, and increase of trehalose compared with double-stranded green fluorescent protein injection. Furthermore, molecular docking was performed on the interaction mode between sNPFR protein and its ligand sNPF based on the 3-dimensional models constructed by AlphaFold; the results indicated that both receptors were presumably activated by the mature peptide sNPF-2. These results revealed that sNPF signaling played a considerably vital role in the feeding regulation of M. separata and represents a potential control target for this pest.


Subject(s)
Neuropeptides , Receptors, Neuropeptide , Animals , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Larva/genetics , Larva/metabolism , Molecular Docking Simulation , Neuropeptides/genetics , Neuropeptides/metabolism
3.
Insect Mol Biol ; 32(2): 213-227, 2023 04.
Article in English | MEDLINE | ID: mdl-36533723

ABSTRACT

Ecdysis triggering hormone (ETH) was originally discovered as a key hormone that regulates insect moulting via binding to its receptor, ETH receptor (ETHR). However, the precise role of ETH in moth reproduction remains to be explored in detail. ETH function was verified in vivo using Mythimna separata (Walker), an important cereal crop pest. RT-qPCR analysis revealed that transcriptional expression profiles of MsepETH showed evident sexual dimorphism in the adult stage. MsepETH expression increased in the females on day 3 and persisted thereafter till day 7, consistent with female ovarian maturation, and was merely detectable in males. Meanwhile, MsepETH expression levels were significantly higher in the trachea than in other tissues. MsepETHR-A and MsepETHR-B were expressed in both sexes and were significantly higher in the antennae than in other tissues. MsepETH and MsepETHR knockdown in females by RNA interference significantly reduced the expression of MsepETH, MsepETHR-A, MsepETHR-B, MsepJHAMT, and MsepVG, which delayed egg-laying and significantly reduced egg production. RNAi 20-hydroxyecdysone (20E) receptor (EcR) decreased MsepETH expression whereas injecting 20E restored egg production that had been disrupted by MsepETH interference. Meanwhile, RNAi juvenile hormone (JH) methoprene tolerant protein (Met) also decreased MsepETH expression and smearing JH analog methoprene (Meth) restored egg production. In conclusion, the reproduction roles of ETH, JH, and 20E were investigated in M. separata. These findings will lay the foundation for future research to develop an antagonist that reduces female reproduction and control strategies for pest insects.


Subject(s)
Molting , Moths , Male , Female , Animals , Methoprene , Juvenile Hormones/metabolism , Moths/metabolism , Insecta/metabolism , Reproduction
4.
J Pharm Anal ; 13(11): 1326-1345, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38174114

ABSTRACT

Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes and the leading cause of blindness and severe visual impairment in adults. The high levels of glucose trigger multiple intracellular oxidative stress pathways, such as POLDIP2, resulting in excessive reactive oxygen species (ROS) production and increased expression of vascular cell adhesion molecule-1 (VCAM-1), hypoxia-inducible factor 1α (HIF-1α), and vascular endothelial growth factor (VEGF), causing microvascular dysfunction. Dihydromyricetin (DMY) is a natural flavonoid small molecule antioxidant. However, it exhibits poor solubility in physiological environments, has a short half-life in vivo, and has low oral bioavailability. In this study, we present, for the first time, the synthesis of ultra-small Fe-DMY nano-coordinated polymer particles (Fe-DMY NCPs), formed by combining DMY with low-toxicity iron ions. In vitro and in vivo experiments confirm that Fe-DMY NCPs alleviate oxidative stress-induced damage to vascular endothelial cells by high glucose, scavenge excess ROS, and improve pathological features of DR, such as retinal vascular leakage and neovascularization. Mechanistic validation indicates that Fe-DMY NCPs can inhibit the activation of the Poldip2-Nox4-H2O2 signaling pathway and downregulate vital vascular function indicators such as VCAM-1, HIF-1α, and VEGF. These findings suggest that Fe-DMY NCPs could serve as a safe and effective antioxidant and microangio-protective agent, with the potential as a novel multimeric drug for DR therapy.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1829-1833, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36476911

ABSTRACT

OBJECTIVE: To investigate the bacteriostatic effect of platelet-rich plasma (PRP) and its derivative platelet gel (PG) supernatant on Escherichia coli in vitro and its relationship with platelet factor 4 (PF4). METHODS: Apheresis platelets donated by healthy volunteers were obtained from the Blood station of Lu an Blood Center as the source of PRP. The counts of platelet, white blood cell and red blood cell in PRP and its derivative PG supernatant were detected by automatic hematology analyzer. Bacterial growth of PRP and PG supernatants co-cultured with bacteria for different time was observed by plate coating culture method, and the contents of PF4 in PRP and PG supernatants were detected by ELISA. RESULTS: Apheresis platelets were collected from 28 healthy volunteers with a median age of 33 (21-56) years old. PRP can inhibit the growth of escherichia coli, but there were individual differences in antibacterial effect within 24 hours. PRP of 13 healthy volunteers had strong antibacterial effect at 24 hours, 7 cases had weak antibacterial effect at 24 hours, and 8 cases had no antibacterial effect at 24 hours. PG supernatant showed no significant individual difference, and all of them had bacteriostatic effect within 12 hours, but no bacteriostatic effect after 12 hours. There was no statistical difference in the bacteriostatic effect of PRP at 24 hours between healthy volunteers aged ≤30 years and >30 years (P>0.05), and there was no statistical difference between the white blood cell count ≤0.1×109/L and (0.1-1) ×109/L groups (P>0.05). There was significant difference in the bacteriostatic effect of PRP between the two groups with platelet content ≤1 000×109/L and >1 000×109/L (P<0.05). The platelet count in PRP was higher than that in PG supernatant ï¼»(911.57±160.52) ×109/L vs 0ï¼½. The PF4 level in PRP was higher than that in PG supernatant (23623.34±9822.14 vs 6664.74±4065.83, P<0.05). CONCLUSION: Both PRP and PG supernatant have antibacterial effects in Escherichia coli. The bacteriostatic effect of PRP was better than that of PG supernatant, and the platelet and PF4 contents in PRP were higher than those in PG supernatant, suggesting that the platelet and PF4 levels play an important role in bacteriostasis.


Subject(s)
Platelet Factor 4 , Platelet-Rich Plasma , Adult , Humans , Middle Aged , Escherichia coli
6.
Sleep Med Rev ; 66: 101696, 2022 12.
Article in English | MEDLINE | ID: mdl-36174425

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Atherosclerosis, a multifactorial disease with complicated pathogenesis, is the main cause of CVD, underlying several major adverse cardiovascular events. Obesity is the main cause of obstructive sleep apnea (OSA) and a significant risk for atherosclerosis. OSA is an independent risk factor for CVD. Recent research has focused on understanding the underlying molecular mechanisms by which OSA influences atherosclerosis pathogenesis. The role of exosomes in this process has attracted considerable attention. Exosomes are a type of extracellular vesicles (EV) that are released from many cells (both healthy and diseased) and mediate cell-to-cell communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells, thereby modulating the functions of target cells and tissues. Intermittent hypoxia in OSA alters the exosomal carrier in circulation and promotes the permeability and dysfunction of endothelial cells, which have been associated with the pathogenesis of atherosclerosis. This review discusses the potential roles of exosomes and exosome-derived molecules in the development and progression of OSA-related atherosclerosis. Additionally, we explore the possible mechanisms underlying OSA-related atherosclerosis and provide new insights for the development of novel exosome-based therapeutics for OSA-related atherosclerosis and CVD.


Subject(s)
Endothelial Cells , Sleep Apnea, Obstructive , Humans
7.
Eur J Med Chem ; 243: 114739, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36126386

ABSTRACT

The fusion of pyrazole scaffold with other skeletons creates a class of attractive molecules, demonstrating significant biological and chemical potentiality in the development of medicinal chemistry. Over the past few decades, numerous biologically active molecules featuring fused pyrazole moieties have been excavated and synthesized, some of which represented by sildenafil have been marketed as drugs, and the biological importance together with chemical synthesis strategies of fused pyrazole compounds, including structural modification based on lead compounds, have been steadily progressing. In this review, we focused our attention on the biological importance of fused pyrazoles and highlighted recent progress in the synthesis of this framework over the past 10 years. What' s more, the limitations, challenges, and future prospects were proposed, wishing to provide references for the development of pyrazole fused frameworks in the field of medicinal chemistry. Contents.


Subject(s)
Chemistry, Pharmaceutical , Pyrazoles , Pyrazoles/chemistry
8.
Front Cell Neurosci ; 16: 862673, 2022.
Article in English | MEDLINE | ID: mdl-35722621

ABSTRACT

Spinal cord injury (SCI) often leads to severe motor, sensory, and autonomic dysfunction in patients and imposes a huge economic cost to individuals and society. Due to its complicated pathophysiological mechanism, there is not yet an optimal treatment available for SCI. Mesenchymal stromal cells (MSCs) are promising candidate transplant cells for use in SCI treatment. The multipotency of MSCs, as well as their rich trophic and immunomodulatory abilities through paracrine signaling, are expected to play an important role in neural repair. At the same time, the simplicity of MSCs isolation and culture and the bypassing of ethical barriers to stem cell transplantation make them more attractive. However, the MSCs concept has evolved in a specific research context to encompass different populations of cells with a variety of biological characteristics, and failure to understand this can undermine the quality of research in the field. Here, we review the development of the concept of MSCs in order to clarify misconceptions and discuss the controversy in MSCs neural differentiation. We also summarize a potential role of MSCs in SCI treatment, including their migration and trophic and immunomodulatory effects, and their ability to relieve neuropathic pain, and we also highlight directions for future research.

9.
RSC Adv ; 12(21): 13087-13092, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35497007

ABSTRACT

A highly efficient potassium carbonate-mediated [3 + 2] cycloaddition reaction of hydrazonoyl chlorides with cinnamic aldehydes to furnish multi-substituted pyrazoles under nontoxic and mild conditions has been developed. A plausible stepwise cycloaddition reaction mechanism is proposed. This protocol featured broad substrate coverage, good functional group tolerance, wide scalability, and operational simplicity, as well as conveniently constructed pyrazole scaffolds.

10.
Stem Cell Res Ther ; 13(1): 151, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395872

ABSTRACT

BACKGROUND: Exosomes (EXOs) derived from stem cells have become a potential new treatment for acute myocardial infarction (AMI). However, their impact is still not fully understood. Therefore, we performed this meta-analysis to systematically review the efficacy of EXOs on AMI in preclinical animal models. METHODS: We searched PubMed, EMBASE, and the Web of Science from September 1, 1980 to September 1, 2021, to retrieve the studies reporting the therapeutic effects of EXOs on AMI animal models. Secondary endpoints include the fractional shortening (FS), infarct size (IS), fibrosis area (FA), the TNF-α, IL-6 and IL-10 levels, the apoptosis rate and the number of autophagic vesicles. Two authors independently screened the articles based on inclusion and exclusion criteria. All statistical analyses were conducted using Stata14.0. RESULTS: Ten studies satisfied the inclusion criteria. Pooled analyses demonstrated that the levels of LVEF (WMD = 3.67%; 95% CI 2.28-5.07%; P = 0.000), FS (WMD = 3.69%; 95% CI 2.06-5.33%; P = 0.000), IS (WMD = -4.52%, 95% CI - 7.14 to - 1.9%; P = 0.001), and FA (WMD = -7.04%, 95% CI - 8.74 to - 5.34%; P = 0.000), TNF-α (WMD = -3.09, 95% CI - 5.47 to - 0.72; P = 0.011), TL-6 (WMD = -6.34, 95% CI - 11.2 to - 1.49; P < 0.01), TL-10 (WMD = 6.37, 95% CI 1.53-11.21; P = 0.01), the apoptosis rate (WMD = -8.23, 95% CI - 15.29 to - 1.17; P = 0.000), and the number of autophagic vesicles (WMD = -4.52, 95% CI - 7.43 to - 1.62; P = 0.000). Subgroup analysis showed that the EXOs were derived from HMSCs. Subgroup analysis showed that the EXOs derived from HMSCs, and that exosome therapy immediately after myocardial infarction can better improve the LVEF. CONCLUSIONS: EXOs therapy has the potential to improve cardiac function, fibrogenesis, and inflammatory response, as well as reducing cell apoptosis and autophagy in preclinical AMI animal models. This can inform future human clinical trials of EXOs.


Subject(s)
Exosomes , Myocardial Infarction , Animals , Models, Animal , Myocardial Infarction/therapy , Randomized Controlled Trials as Topic , Stem Cells , Tumor Necrosis Factor-alpha
11.
Phytomedicine ; 99: 154015, 2022 May.
Article in English | MEDLINE | ID: mdl-35278901

ABSTRACT

BACKGROUND: Breast cancer is one of the malignant tumors with the highest morbidity and mortality rate. Numerous efficient anti-breast cancer drugs are being derived from the development of natural products. Voacamine (VOA), a bisindole alkaloid isolated from Voacanga africana Stapf, possesses various pharmacological and biological activities. PURPOSE: In this study, we investigated the efficacy of VOA against breast cancer cells and elucidated the underlying mechanisms in vitro and in vivo. METHODS: Human breast cancer cell line MCF-7 and mouse breast cancer cell line 4T1 were used to study the underlying anti-cancer mechanisms of VOA. The proliferation was detected by MTT, colony formation, cell proliferation and wound-healing migration assays. Flow cytometry was utilized to determine the level of reactive oxygen species (ROS) cell-cycle, apoptosis and mitochondrial membrane potential. The target proteins were analyzed by Western blot. Molecular docking was performed and scored by AutoDock. Subcutaneous cancer models in mice were established to evaluate the anticancer effects in vivo. RESULT: Our results demonstrated that VOA selectively suppressed breast cancer MCF-7 and 4T1 cells proliferation with IC50 values of 0.99 and 1.48 µM, and significantly inhibited the migration and colony formation of tumor cells. Furthermore, the cell cycle was arrested in the S phase with the decreased expression levels of CDK2, Cyclin A and Cyclin E. Additionally, exposure to VOA dose-dependently brought about dose-dependently the loss of mitochondrial membrane potential (Δψm) and amassment of reactive oxygen species (ROS), resulting in the initiation of the intrinsic apoptotic pathway. Western blot analysis unveiled that VOA significantly activated mitochondrial-associated apoptosis and obviously suppress the PI3K/Akt/mTOR pathway via modulation of related protein expression levels in both tumor cell lines. In tumor-bearing mouse models, administration of VOA dose-dependently inhibited the tumor growth without causing apparent toxicities. CONCLUSION: These findings revealed the novel properties of VOA in promoting apoptosis of breast cancer cells by activating mitochondrial-associated apoptosis signaling pathway and inhibiting PI3K/Akt/mTOR signaling pathway and significantly decreasing tumor size without detecting appreciable toxicity. In summary, the present results demonstrated VOA could be an encouraging drug candidate to cure breast cancer, exhibiting an effective method to exploit unique drugs from natural components.

12.
STAR Protoc ; 3(4): 101921, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595904

ABSTRACT

Here, we present a detailed protocol for the identification of potential oncofetal targets for hepatocellular carcinoma (HCC) patients through a hepatocyte differentiation model and a sorafenib refractory cell-line-derived xenograft model. We describe the procedures of tumor sphere formation, organoid generation, and subcutaneous tumor formation for functional studies. We then detail the procedures of immunohistochemistry and immunofluorescence for examination of changes in lineage-specific markers. Finally, we describe the development of antibody-based therapeutics targeting tumor lineage plasticity in HCC. For complete details on the use and execution of this protocol, please refer to Kong et al. (2021).1.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Drug Resistance, Neoplasm , Sorafenib/therapeutic use , Cell Line
13.
Nat Commun ; 12(1): 7142, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880251

ABSTRACT

Tumour lineage plasticity is an emerging hallmark of aggressive tumours. Tumour cells usually hijack developmental signalling pathways to gain cellular plasticity and evade therapeutic targeting. In the present study, the secreted protein growth and differentiation factor 1 (GDF1) is found to be closely associated with poor tumour differentiation. Overexpression of GDF1 suppresses cell proliferation but strongly enhances tumour dissemination and metastasis. Ectopic expression of GDF1 can induce the dedifferentiation of hepatocellular carcinoma (HCC) cells into their ancestral lineages and reactivate a broad panel of cancer testis antigens (CTAs), which further stimulate the immunogenicity of HCC cells to immune-based therapies. Mechanistic studies reveal that GDF1 functions through the Activin receptor-like kinase 7 (ALK7)-Mothers against decapentaplegic homolog 2/3 (SMAD2/3) signalling cascade and suppresses the epigenetic regulator Lysine specific demethylase 1 (LSD1) to boost CTA expression. GDF1-induced tumour lineage plasticity might be an Achilles heel for HCC immunotherapy. Inhibition of LSD1 based on GDF1 biomarker prescreening might widen the therapeutic window for immune checkpoint inhibitors in the clinic.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Plasticity/drug effects , Growth Differentiation Factor 1/metabolism , Growth Differentiation Factor 1/pharmacology , Immunotherapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/metabolism , Male , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Testicular Neoplasms/metabolism
14.
Exp Hematol Oncol ; 10(1): 53, 2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34774101

ABSTRACT

Human gastrointestinal malignancies are highly heterogeneous cancers. Clinically, heterogeneity largely contributes to tumor progression and resistance to therapy. Heterogeneity within gastrointestinal cancers is defined by molecular subtypes in genomic and transcriptomic analyses. Cancer stem cells (CSCs) have been demonstrated to be a major source of tumor heterogeneity; therefore, assessing tumor heterogeneity by CSC trait-guided classification of gastrointestinal cancers is essential for the development of effective therapies. CSCs share critical features with embryonic stem cells (ESCs). Molecular investigations have revealed that embryonic genes and developmental signaling pathways regulating the properties of ESCs or cell lineage differentiation are abnormally active and might be oncofetal drivers in certain tumor subtypes. Currently, multiple strategies allow comprehensive identification of tumor subtype-specific oncofetal signatures and evaluation of subtype-specific therapies. In this review, we summarize current knowledge concerning the molecular classification of gastrointestinal malignancies based on CSC features and elucidate their clinical relevance. We also outline strategies for molecular subtype identification and subtype-based therapies. Finally, we explore how clinical implementation of tumor classification by CSC subtype might facilitate the development of more effective personalized therapies for gastrointestinal cancers.

15.
Front Physiol ; 12: 712281, 2021.
Article in English | MEDLINE | ID: mdl-34512386

ABSTRACT

Endothelial dysfunction (ED) is a core pathophysiological process. The abnormal response of vascular endothelial (VE) cells to risk factors can lead to systemic consequences. ED caused by intermittent hypoxia (IH) has also been recognized. Neuropeptide Y (NPY) is an important peripheral neurotransmitter that binds to different receptors on endothelial cells, thereby causing ED. Additionally, hypoxia can induce the release of peripheral NPY; however, the involvement of NPY and its receptor in IH-induced ED has not been determined. This review explains the definition of chronic IH and VE function, including the relationship between ED and chronic IH-related vascular diseases. The results showed that that the effect of IH on VE injury is mediated by the VE-barrier structure and endothelial cell dysfunction. These findings offer new ideas for the prevention and treatment of obstructive sleep apnea syndrome and its complications.

16.
Front Microbiol ; 12: 674502, 2021.
Article in English | MEDLINE | ID: mdl-34276606

ABSTRACT

Tigecycline is a last-resort antibiotic for infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). This study aimed to broaden our understanding of the acquisition of collateral hypersensitivity by CRKP, as an evolutionary trade-off of developing resistance to tigecycline. Experimental induction of tigecycline resistance was conducted with tigecycline-sensitive CRKP clinical isolates. Antimicrobial susceptibility testing, microbial fitness assessment, genotypic analysis and full-genome sequencing were carried out for these clinical isolates and their resistance-induced descendants. We found that tigecycline resistance was successfully induced after exposing CRKP clinical isolates to tigecycline at gradually increased concentrations, at a minor fitness cost of bacterial cells. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) found higher expression of the efflux pump gene acrB (5.3-64.5-fold) and its regulatory gene ramA (7.4-65.8-fold) in resistance-induced strains compared to that in the tigecycline-sensitive clinical isolates. Stable hypersensitivities to aminoglycosides and other antibiotics were noticed in resistance-induced strains, showing significantly lowered MICs (X 4 - >500 times). Full genome sequencing and plasmid analysis suggested the induced collateral hypersensitivity might be multifaceted, with the loss of an antimicrobial resistance (AMR) plasmid being a possible major player. This study rationalized the sequential combination of tigecycline with aminoglycosides for the treatment of CRKP infections.

17.
Bull Entomol Res ; 111(4): 385-393, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33988096

ABSTRACT

The oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) is a major migratory pest of cereal crops in East Asia, South Asia and Australia. To comprehensively understand the ecological tolerance of M. separata, we collected life table data of individuals from four consecutive generations reared under outdoor natural fluctuating temperatures from 15 April to 17 October 2018 in Yangling, Shaanxi, China. The results showed that the immature stage in early summer and summer were shorter than in spring and autumn. High mortality in late larval instar and pupal stages was observed in the summer generation. The adult pre-oviposition period in autumn was longer than the other seasons. The population in the earlier two seasons had heavier pupae and higher fecundity than the population in the latter two seasons. The intrinsic rate of increase and the finite rate of increase was the highest in early summer (r = 0.1292 day-1, λ = 1.1391 day-1), followed by spring (r = 0.1102 day-1, λ = 1.1165 day-1), and was the lowest in summer (r = 0.0281 day-1, λ = 1.0293 day-1). The results of this study would be useful to predict the population dynamics of M. separata and deepen our standing of the adaptiveness of this migratory pest in natural fluctuating ambient environments.


Subject(s)
Moths/growth & development , Animals , Female , Life Tables , Male , Seasons , Temperature
18.
Front Cardiovasc Med ; 8: 630968, 2021.
Article in English | MEDLINE | ID: mdl-33708805

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.

19.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536280

ABSTRACT

Tumor lineage plasticity is emerging as a critical mechanism of therapeutic resistance and tumor relapse. Highly plastic tumor cells can undergo phenotypic switching to a drug-tolerant state to avoid drug toxicity. Here, we investigate the transmembrane tight junction protein Claudin6 (CLDN6) as a therapeutic target related to lineage plasticity for hepatocellular carcinoma (HCC). CLDN6 was highly expressed in embryonic stem cells but markedly decreased in normal tissues. Reactivation of CLDN6 was frequently observed in HCC tumor tissues as well as in premalignant lesions. Functional assays indicated that CLDN6 is not only a tumor-associated antigen but also conferred strong oncogenic effects in HCC. Overexpression of CLDN6 induced phenotypic shift of HCC cells from hepatic lineage to biliary lineage, which was more refractory to sorafenib treatment. The enhanced tumor lineage plasticity and cellular identity change were potentially induced by the CLDN6/TJP2 (tight junction protein 2)/YAP1 (Yes-associated protein 1) interacting axis and further activation of the Hippo signaling pathway. A de novo anti-CLDN6 monoclonal antibody conjugated with cytotoxic agent (Mertansine) DM1 (CLDN6-DM1) was developed. Preclinical data on both HCC cell lines and primary tumors showed the potent antitumor efficiency of CLDN6-DM1 as a single agent or in combination with sorafenib in HCC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Immunoconjugates , Liver Neoplasms , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Immunoconjugates/therapeutic use , Liver Neoplasms/drug therapy , Neoplasm Recurrence, Local , Sorafenib/pharmacology , Sorafenib/therapeutic use
20.
RSC Adv ; 11(60): 38060-38078, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498096

ABSTRACT

In recent years, N-heterocyclic carbenes (NHCs) have established themselves as a masterful and promising type of organocatalyst for the speedy construction of medicinally and biologically significant molecules from common and accessible small molecules. In particular, various cyclic scaffolds, including carbocycles and heterocycles, have been synthesized using NHCs via cycloaddition reaction. An exhaustive review focused on the chemistry of NHCs in these cyclic molecules has yet to be reported. In this contribution, a general picture of the utilization of NHCs in constructing twelve kinds of bioactive cyclic skeletons is firstly presented. We provide a systematic and comprehensive overview from the perspective of cycloaddition reactions; moreover, the limitations, challenges, and future prospects were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...