Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Commun ; 5(3): 100775, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38050356

ABSTRACT

The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.


Subject(s)
Alternaria , Arabidopsis , Alternaria/metabolism , Tenuazonic Acid/metabolism , Singlet Oxygen/metabolism , Virulence , Chloroplasts/metabolism , Arabidopsis/genetics , Plants/metabolism , Signal Transduction
2.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38041863

ABSTRACT

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Subject(s)
Adenine/analogs & derivatives , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salicylic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
3.
Front Pharmacol ; 14: 1201401, 2023.
Article in English | MEDLINE | ID: mdl-37383715

ABSTRACT

Background: Despite the increasing number of research endeavors dedicated to investigating the relationship between colorectal carcinoma (CRC) and hepatocellular carcinoma (HCC), the underlying pathogenic mechanism remains largely elusive. The aim of this study is to shed light on the molecular mechanism involved in the development of this comorbidity. Methods: The gene expression profiles of CRC (GSE90627) and HCC (GSE45267) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of psoriasis and atherosclerosis, three kinds of analyses were performed, namely, functional annotation, protein-protein interaction (PPI) network and module construction, and hub gene identification, survival analysis and co-expression analysis. Results: A total of 150 common downregulated differentially expressed genes and 148 upregulated differentially expressed genes were selected for subsequent analyses. The significance of chemokines and cytokines in the pathogenesis of these two ailments is underscored by functional analysis. Seven gene modules that were closely connected were identified. Moreover, the lipopolysaccharide-mediated signaling pathway is intricately linked to the development of both diseases. Finally, 10 important hub genes were identified using cytoHubba, including CDK1, KIF11, CDC20, CCNA2, TOP2A, CCNB1, NUSAP1, BUB1B, ASPM, and MAD2L1. Conclusion: Our study reveals the common pathogenesis of colorectal carcinoma and hepatocellular carcinoma. These common pathways and hub genes may provide new ideas for further mechanism research.

4.
Plant Physiol ; 192(4): 3120-3133, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37096689

ABSTRACT

Chloroplast-to-nucleus retrograde signaling (RS) pathways are critical in modulating plant development and stress adaptation. Among chloroplast proteins mediating RS pathways, GENOMES UNCOUPLED1 (GUN1) represses the transcription of the nuclear transcription factors GOLDEN2-LIKE1 (GLK1) and GLK2 that positively regulate chloroplast biogenesis. Given the extensive exploration of the function of GUN1 in biogenic RS carried out in previous years, our understanding of its role in plant stress responses remains scarce. Here, we revealed that GUN1 contributes to the expression of salicylic acid (SA)-responsive genes (SARGs) through transcriptional repression of GLK1/2 in Arabidopsis (Arabidopsis thaliana). Loss of GUN1 significantly compromised the SA responsiveness in plants, concomitant with the upregulation of GLK1/2 transcripts. In contrast, knockout of GLK1/2 potentiated the expression of SARGs and led to enhanced stress responses. Chromatin immunoprecipitation, coupled with quantitative PCR and related reverse genetic approaches, unveiled that in gun1, GLK1/2 might modulate SA-triggered stress responses by stimulating the expression of WRKY18 and WRKY40, transcriptional repressors of SARGs. In summary, we demonstrate that a hierarchical regulatory module, consisting of GUN1-GLK1/2-WRKY18/40, modulates SA signaling, opening a research avenue regarding a latent GUN1 function in plant-environment interactions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
5.
Plant Commun ; 3(1): 100264, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35059631

ABSTRACT

Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.


Subject(s)
Arabidopsis , Chloroplasts , Arabidopsis/genetics , Arabidopsis/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction
6.
Mol Plant ; 15(3): 438-453, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34968736

ABSTRACT

Oxidative post-translational modifications of specific chloroplast proteins contribute to the initiation of retrograde signaling. The Arabidopsis thaliana EXECUTER1 (EX1) protein, a chloroplast-localized singlet oxygen (1O2) sensor, undergoes tryptophan (Trp) 643 oxidation by 1O2, a chloroplast-derived and light-dependent reactive oxygen species. The indole side chain of Trp is vulnerable to 1O2, leading to the generation of oxidized Trp variants and priming EX1 for degradation by a membrane-bound FtsH protease. The perception of 1O2 via Trp643 oxidation and subsequent EX1 proteolysis facilitate chloroplast-to-nucleus retrograde signaling. In this study, we discovered that the EX1-like protein EX2 also undergoes 1O2-dependent Trp530 oxidation and FtsH-dependent turnover, which attenuates 1O2 signaling by decelerating EX1-Trp643 oxidation and subsequent EX1 degradation. Consistent with this finding, the loss of EX2 function reinforces EX1-dependent retrograde signaling by accelerating EX1-Trp643 oxidation and subsequent EX1 proteolysis, whereas overexpression of EX2 produces molecular phenotypes opposite to those observed in the loss-of- function mutants of EX2. Intriguingly, phylogenetic analysis suggests that EX2 may have emerged evolutionarily to attenuate the sensitivity of EX1 toward 1O2. Collectively, these results suggest that EX2 functions as a negative regulator of the EX1 signalosome through its own 1O2-dependent oxidation, providing a new mechanistic insight into the regulation of EX1-mediated 1O2 signaling.


Subject(s)
Arabidopsis , Singlet Oxygen , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Nucleus/metabolism , Chloroplasts/metabolism , Phylogeny , Singlet Oxygen/metabolism
7.
Plant Physiol ; 188(4): 2308-2324, 2022 03 28.
Article in English | MEDLINE | ID: mdl-34951648

ABSTRACT

GOLDEN2-LIKE (GLK) transcription factors drive the expression of photosynthesis-associated nuclear genes (PhANGs) indispensable for chloroplast biogenesis. Salicylic acid (SA)-induced SIGMA FACTOR-BINDING PROTEIN 1 (SIB1), a transcription coregulator and positive regulator of cell death, interacts with GLK1 and GLK2 to reinforce the expression of PhANGs, leading to photoinhibition of photosystem II and singlet oxygen (1O2) burst in chloroplasts. 1O2 then contributes to SA-induced cell death via EXECUTER 1 (EX1; 1O2 sensor protein)-mediated retrograde signaling upon reaching a critical level. This earlier finding has initiated research on the potential role of GLK1/2 and EX1 in SA signaling. Consistent with this view, we reveal that LESION-SIMULATING DISEASE 1 (LSD1), a transcription coregulator and negative regulator of SA-primed cell death, interacts with GLK1/2 to repress their activities in Arabidopsis (Arabidopsis thaliana). Overexpression of LSD1 repressed GLK target genes, including PhANGs, whereas loss of LSD1 enhanced their expression. Remarkably, LSD1 overexpression inhibited chloroplast biogenesis, resembling the characteristic glk1glk2 double mutant phenotype. Subsequent chromatin immunoprecipitation coupled with expression analyses further revealed that LSD1 inhibits the DNA-binding activity of GLK1 toward its target promoters. SA-induced nuclear-targeted SIB1 proteins appeared to interrupt the LSD1-GLK interaction, and the subsequent SIB1-GLK interaction activated EX1-mediated 1O2 signaling, elucidating antagonistic modules SIB1 and LSD1 in the regulation of GLK activity. Taken together, we provide a working model that SIB1 and LSD1, mutually exclusive SA-signaling components, antagonistically regulate GLK1/2 to fine-tune the expression of PhANGs, thereby modulating 1O2 homeostasis and related stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Photosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins , Gene Expression Regulation, Plant , Photosynthesis/genetics , Sigma Factor , Transcription Factors/metabolism
8.
Int J Nanomedicine ; 16: 5101-5115, 2021.
Article in English | MEDLINE | ID: mdl-34349510

ABSTRACT

INTRODUCTION: Promotion odontogenic differentiation of dental pulp stem cells (DPSCs) is essential for dentin regeneration. Physical cellular microenvironment is of critical importance for stem cells differentiation and influences the function of other biological/chemical factors to differentiation. METHODS: Based on adjusting the mechanical/interfacial properties of hydrogels, multicellular spheroids (MCSs) of DPSCs generated through self-organization. The spheroids were characterized by immunofluorescent staining and flow cytometry. Quantitative real-time polymerase chain reaction, alkaline phosphatase (ALP) activity assay, ALP staining and Alizarin Red S staining were performed to evaluate the osteogenic/odontogenic differentiation of DPSCs with or without magnetic iron oxide nanoparticles (IONPs) induction. RESULTS: MCSs of DPSCs exhibited a significant upregulation of E-cadherin and N-cadherin and enriched CD146 positive subpopulation, along with a stronger osteogenic/odontogenic differentiation ability. Moreover, DPSCs spheroids showed more substantial osteogenic differentiation tendency than the classical two-dimensional cultured DPSCs under the stimulation of magnetic IONPs. CONCLUSION: Three-dimensional spheroids culture of DPSCs based on composite viscoelastic materials combined with mechanical/magnetic stimulation may provide a theoretical basis for the subsequent development of dentin or bone regeneration technology.


Subject(s)
Cell Differentiation , Dental Pulp , Magnetite Nanoparticles , Osteogenesis , Stem Cells , Cell Proliferation , Cells, Cultured , Humans , Hydrogels , Spheroids, Cellular
9.
Environ Res ; 187: 109617, 2020 08.
Article in English | MEDLINE | ID: mdl-32445946

ABSTRACT

Fe3O4/Polyvinylidene fluoride (PVDF) three-channel hollow fiber catalytic membrane was successfully fabricated via non-solvent induced phase inversion and used for organic wastewater degradation in this work. The effects of Fe3O4 nanoparticles addition on the surface and cross-section morphologies, hydrophilicity and thermal properties of the catalytic membrane were characterized by the field emission scanning electron microscopy (SEM), water contact angle and thermogravimetric analysis (TGA), respectively. The obtained catalytic membrane exhibited good hydrophilicity, a high pure water flux of 175.8 L m-2 h-1 and a high removal of methylene blue (up to 97.6%) with Fenton catalytic reaction. Meanwhile, the catalytic membrane shows excellent anti-fouling property due to the presence of Fenton reaction. Our results show that Fe3O4/PVDF three-channel hollow fiber catalytic membrane was a promising alternative for the degradation of organic contaminants.


Subject(s)
Membranes, Artificial , Wastewater , Permeability , Polyvinyls
10.
Plant Cell ; 32(7): 2237-2250, 2020 07.
Article in English | MEDLINE | ID: mdl-32409317

ABSTRACT

The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Salicylic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Membrane/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Cells/metabolism , Plants, Genetically Modified , Salicylic Acid/pharmacology , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Plant Physiol ; 183(1): 358-370, 2020 05.
Article in English | MEDLINE | ID: mdl-32139475

ABSTRACT

N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , N-Terminal Acetyltransferase B/metabolism , Salicylic Acid/pharmacology , Sigma Factor/metabolism , Acetylation , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Death/genetics , N-Terminal Acetyltransferase B/genetics , Sigma Factor/genetics
12.
Nat Commun ; 10(1): 2834, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249292

ABSTRACT

Environmental information perceived by chloroplasts can be translated into retrograde signals that alter the expression of nuclear genes. Singlet oxygen (1O2) generated by photosystem II (PSII) can cause photo-oxidative damage of PSII but has also been implicated in retrograde signaling. We previously reported that a nuclear-encoded chloroplast FtsH2 metalloprotease coordinates 1O2-triggered retrograde signaling by promoting the degradation of the EXECUTER1 (EX1) protein, a putative 1O2 sensor. Here, we show that a 1O2-mediated oxidative post-translational modification of EX1 is essential for initiating 1O2-derived signaling. Specifically, the Trp643 residue in DUF3506 domain of EX1 is prone to oxidation by 1O2. Both the substitution of Trp643 with 1O2-insensitive amino acids and the deletion of the DUF3506 domain abolish the EX1-mediated 1O2 signaling. We thus provide mechanistic insight into how EX1 senses 1O2 via Trp643 located in the DUF3506 domain.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plastids/metabolism , Singlet Oxygen/metabolism , Amino Acid Motifs , Amino Acid Substitution , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Oxidation-Reduction , Plastids/chemistry , Plastids/genetics , Protein Domains , Protein Processing, Post-Translational , Signal Transduction
13.
Plant Cell ; 31(1): 210-230, 2019 01.
Article in English | MEDLINE | ID: mdl-30606779

ABSTRACT

Chloroplast-to-nucleus retrograde signaling is essential for the coupled expression of photosynthesis-associated nuclear genes (PhANGs) and plastid genes (PhAPGs) to ensure the functional status of chloroplasts (Cp) in plants. Although various signaling components involved in the process have been identified in Arabidopsis (Arabidopsis thaliana), the biological relevance of such coordination remains an enigma. Here, we show that the uncoupled expression of PhANGs and PhAPGs contributes to the cell death in the lesion simulating disease1 (lsd1) mutant of Arabidopsis. A daylength-dependent increase of salicylic acid (SA) appears to rapidly up-regulate a gene encoding SIGMA FACTOR BINDING PROTEIN1 (SIB1), a transcriptional coregulator, in lsd1 before the onset of cell death. The dual targeting of SIB1 to the nucleus and the Cps leads to a simultaneous up-regulation of PhANGs and down-regulation of PhAPGs. Consequently, this disrupts the stoichiometry of photosynthetic proteins, especially in PSII, resulting in the generation of the highly reactive species singlet oxygen (1O2) in Cps. Accordingly, inactivation of the nuclear-encoded Cp protein EXECUTER1, a putative 1O2 sensor, significantly attenuates the lsd1-conferred cell death. Together, these results provide a pathway from the SA- to the 1O2-signaling pathway, which are intertwined via the uncoupled expression of PhANGs and PhAPGs, contributing to the lesion-mimicking cell death in lsd1.


Subject(s)
Arabidopsis/metabolism , Cell Nucleus/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Salicylic Acid/metabolism , Singlet Oxygen/metabolism
14.
J Am Chem Soc ; 140(34): 10734-10739, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30078313

ABSTRACT

Metal-free organic phosphorescence materials are of imperious demands in optoelectronics and bioelectronics. However, it is still a formidable challenge to develop a material with simultaneous efficiency and lifetime enhancement under ambient conditions. In this study, we design and synthesize a new class of high efficient ultralong organic phosphorescence (UOP) materials through self-assembly of melamine and aromatic acids in aqueous media. A supramolecular framework can be formed via multiple intermolecular interactions, building a rigid environment to lock the molecules firmly in a three-dimensional network, which not only effectively limits the nonradiative decay of the triplet excitons but also promotes the intersystem crossing. Thus, the supermolecules we designed synchronously achieve an ultralong emission lifetime of up to 1.91 s and a high phosphorescence quantum efficiency of 24.3% under ambient conditions. To the best of our knowledge, this is the best performance of UOP materials with simultaneous efficiency and lifetime enhancement. Furthermore, it is successfully applied in a barcode identification in darkness. This result not only paves the way toward high efficient UOP materials but also expands their applications.

15.
ACS Appl Mater Interfaces ; 10(18): 15609-15615, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29692171

ABSTRACT

Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.

16.
Proc Natl Acad Sci U S A ; 112(14): 4233-8, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25831542

ABSTRACT

Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.

17.
Opt Express ; 20(6): 6021-8, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418479

ABSTRACT

In this paper, a strain-insensitive temperature sensor based on a dual polarization fiber grating laser is demonstrated. The laser is fabricated by inscribing two wavelength-matched Bragg gratings in an Er-doped fiber. It emits single-longitudinal-mode output in wavelength domain and generates a RF-domain signal as a beat note between the two polarization modes. A temperature sensor has been exploited by monitoring the beat frequency. The measured temperature sensitivity is -78.46 kHz/°C. Theoretical analysis suggests that the temperature response is a result of both the differences in thermo-optic coefficient and thermal expansion between the core and cladding. In contrast, the sensor is almost insensitive to applied axial strain. We found that the strain insensitivity is due to the compensation between the strain-induced birefringence change and the effect of the elongation/material index change. The proposed sensor can be applied for reliable and precise measurement of temperature independently, towards the applications in structural integrity, oil-well monitoring, aerospace engineering, and process control.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Refractometry/instrumentation , Thermography/instrumentation , Thermometers , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Stress, Mechanical
18.
Opt Express ; 20(7): 6961-7, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453374

ABSTRACT

A simple technique has been proposed and demonstrated to generate radio-frequency (RF) signal based on a fiber grating laser with multi-octave tunablity. The laser is fabricated by inscribing a wavelength-matched Bragg grating pair in a short section of low-birefringence Er/Yb co-doped fiber. A RF signal can be obtained by beating the two-polarization mode output with its frequency determined by the birefringence within the cavity. By slicing the laser cavity into two sections and then aligning them with a rotated angle, the output beat frequency can be continuously tuned in a multi-octave frequency range as shown in the experiment from 2.05 GHz down to 289 MHz, as a result of the induced change in optical length for each polarization mode. The present technique has the advantages including simple scheme and large tuning range, and the ability of tuning could be further improved by use of active fibers with higher birefringence.


Subject(s)
Fiber Optic Technology/instrumentation , Refractometry/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...