Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.872
Filter
1.
Beilstein J Org Chem ; 20: 959-972, 2024.
Article in English | MEDLINE | ID: mdl-38711588

ABSTRACT

Terpenoids are one of the largest class of natural products with diverse structures and activities. This enormous diversity is embedded in enzymes called terpene synthases (TSs), which generate diverse terpene skeletons via sophisticated cyclization cascades. In addition to the many highly selective TSs, there are many promiscuous TSs that accept multiple prenyl substrates, or even noncanonical ones, with 6, 7, 8, 11, and 16 carbon atoms, synthesized via chemical approaches, C-methyltransferases, or engineered lepidopteran mevalonate pathways. The substrate promiscuity of TSs not only expands the structural diversity of terpenes but also highlights their potential for the discovery of novel terpenoids via combinatorial biosynthesis. In this review, we focus on the current knowledge on multisubstrate terpene synthases (MSTSs) and highlight their potential applications.

2.
Sci Total Environ ; : 173482, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795982

ABSTRACT

Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.

3.
Small ; : e2400970, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801301

ABSTRACT

The fabrication of materials with hierarchical structures has garnered great interest, owing to the potential for significantly enhancing their functions. Herein, a strategy of coupling molecular solvation and crystal growth is presented to fabricate porous spherulites of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), an important energetic material. With the addition of polyvinylpyrrolidone in the antisolvent crystallization, the metastable solvate of CL-20 is formed and grows spherulitically, and spontaneously desolvates to obtain the porous spherulite when filtration, in which the characteristic peak of the nitro group of CL-20 shifts detected by the in situ micro-confocal Raman spectroscopy. The effect of polyvinylpyrrolidone is thought to induce the solvation of CL-20, confirmed by density functional theory calculations, meanwhile acting on the (020) face of CL-20 to trigger spherulitic growth, demonstrated through infrared spectroscopy and Rietveld refinement of powder X-ray diffraction. Moreover, compared to common CL-20 crystals, porous spherulites exhibit enhanced combustion with increases of 6.24% in peak pressure, 40.21% in pressurization rate, and 9.63% in pressure duration effect, indicating the capability of hierarchical structures to boost the energy release of energetic crystals. This work demonstrates a new route via solvation-growth coupling to construct hierarchical structures for organic crystals and provides insight into the structure-property relations for material design.

4.
RSC Adv ; 14(24): 17152-17157, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38808241

ABSTRACT

Herein, a nucleic acid assay based on autocatalytic hairpin assembly (ACHA) was proposed. In this system, two split G-quadruplex sequences were integrated into H1 and H2, respectively. And a DNA strand with the same sequence to target DNA was integrated into the assistant hairpin H3. In the presence of target DNA, the hairpin structure of H1 was opened and catalytic hairpin assembly (CHA) was activated, and then a series of DNA assembly steps based on the toehold-mediated DNA strand displacement were triggered and the product H1-H2 with sticky ends on both sides was formed. On the one side of H1-H2, the split two G-quadruplex sequences were close enough to form the intact G-quadruplex for the signal readout. At the same time, two sticky ends on the other side of H1-H2 hybridized with H3 and a new sticky end with the sequence same to the target DNA was exposed, which can immediately trigger the autocatalytic hairpin assembly reaction, and then the reaction rate of CHA was effectively accelerated and the colorimetric signal was significantly amplified. This ACHA signal amplified strategy has been successfully applied for the rapid and colorimetric nucleic acid detection.

5.
Biomolecules ; 14(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38785978

ABSTRACT

Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell Proliferation , DNA Methylation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , DNA Methylation/genetics , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Cell Proliferation/genetics , Prognosis , Middle Aged , Gene Expression Regulation, Neoplastic , Early Detection of Cancer , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/blood , Cell Line, Tumor , Adult
6.
ACS Biomater Sci Eng ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775700

ABSTRACT

Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 µm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.

7.
Heliyon ; 10(9): e30649, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774078

ABSTRACT

Noninvasive and sensitive thermometry of a single cell during the normal physiological process is crucial for analyzing fundamental cellular metabolism and applications to cancer treatment. However, current thermometers generally sense the average temperature variation for many cells, thereby failing to obtain real-time and continuous data of an individual cell. In this study, we employed platinum (Pt) electrodes to construct an integrated microfluidic chip as a single-cell thermometer. The single-cell isolation unit in the microchip consisted of a main channel, which was connected to the inlet and outlet of a single-cell capture funnel. A single cell can be trapped in the funnel and the remaining cells can bypass and flow along the main channel to the outlet. The best capture ratio of a single MCF7 cell at a single-cell isolation unit was 90 % under optimal condition. The thermometer in the micro-chip had a temperature resolution of 0.007 °C and showed a good linear relationship in the range of 20-40 °C (R2 = 0.9999). Slight temperature increment of different single tumor cell (MCF7 cell, H1975 cell, and HepG2 cell) cultured on the chip was continuously recorded under normal physiological condition. In addition, the temperature variation of single MCF7 cell in-situ after exposure to a stimulus (4 % paraformaldehyde treatment) was also monitored, showing an amplitude of temperature fluctuations gradually decreased over time. Taken together, this integrated microchip is a practical tool for detecting the change in the temperature of a single cell in real-time, thereby offering valuable information for the drug screening, diagnosis, and treatment of cancer.

8.
Heliyon ; 10(10): e30594, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774318

ABSTRACT

Aim: Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods: Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results: LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion: The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.

9.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776372

ABSTRACT

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Subject(s)
Magnetic Resonance Imaging , Saimiri , Spinal Cord , White Matter , Animals , White Matter/diagnostic imaging , White Matter/physiology , Spinal Cord/physiology , Spinal Cord/diagnostic imaging , Magnetic Resonance Imaging/methods , Rest/physiology , Oxygen/blood , Oxygen/metabolism , Male , Gray Matter/diagnostic imaging , Gray Matter/physiology , Female
10.
Article in English | MEDLINE | ID: mdl-38777654

ABSTRACT

INTRODUCTION: COVID-19 poses risks and leads to complications for vulnerable populations, including children. Unreported cases of COVID-19 among children hinder our understanding of the true disease burden. In this study, we aimed to investigate the proportion of children who report no prior infection to SARS-CoV-2 but who nevertheless exhibit serological evidence of prior infection. METHODS: Between November 2022 and February 2023, we recruited children and adolescents under 19 years of age who lacked a prior history of SARS-CoV-2 infection. Participants underwent SARS-CoV-2 antibody testing to assess the presence of IgG antibodies specific to nucleocapsid (N) and spike (S) proteins. Demographic and contact information were also collected. RESULTS: Among 260 COVID-19-free children, the overall anti-N antibody positivity rate, which varied across age groups (4%-25%), was 9.2% (24/260). Contact with individuals who were positive for COVID-19, particularly the children's mothers, significantly increased the likelihood of antibody positivity. The median age of the 34 children who remained unvaccinated against COVID-19 was lower than that of the children who were vaccinated (6.5 vs. 9 years; p < 0.001). Until January 2024, the overall infection rate was 41.9% (99/236) among children who were negative for anti-N antibodies, irrespective of vaccination status or the presence of chronic disease. CONCLUSION: We discovered previously undisclosed cases of SARS-CoV-2 infection among children. The risk of seropositivity increases substantially with household contact. Regarding children who report no prior exposure to COVID-19, clinicians must remain vigilant, as SARS-CoV-2 remains a concern.

11.
Sleep Med ; 119: 424-431, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38781665

ABSTRACT

BACKGROUND: This cross-sectional study aimed to examine the prevalence and correlates of social jetlag (SJL) in Chinese adolescents, as well as to test the relationships between SJL and mental health problems. METHODS: A total of 106979 students (Mage = 13.0 ± 1.8 years; Nmale = 58296 [54.5 %]) from Shenzhen, China completed an online survey from May 24th to June 5th, 2022. Information on sociodemographics, lifestyles, sleep characteristics, anxiety symptoms, and depressive symptoms was collected by a self-administered questionnaire. Multivariate and binary logistic regression were adopted for data analysis. RESULTS: 17.8 % of participants experienced SJL ≥ 2 h. To adjust the accumulated sleep debt, sleep-corrected SJL (SJLsc) was calculated and 8.3 % of individuals self-reported SJLsc ≥ 2 h. Both SJL and SJLsc show an increasing trend with age. Risk factors of SJL included females, poor parental marital status, being overweight, physically inactive, smoking, drinking, and having a late chronotype. Moreover, males, having siblings, boarding at school, short sleep duration, experiencing insomnia, and frequent nightmares were significantly associated with an increased risk of SJLsc. After adjusting for all covariates, adolescents with SJLsc ≥ 2 h were more likely to have anxiety symptoms (OR: 1.35, 95 % CI: 1.24-1.48) and depressive symptoms (OR: 1.35, 95 % CI: 1.25-1.46) than those with SJLsc < 1 h. CONCLUSIONS: SJL is common among Chinese school-age adolescents. This study is valuable for the development of prevention and intervention strategies for SJL in adolescents at the population level. Additionally, the strong links between SJLsc and emotional problems underscore the critical significance of addressing SJL as a key aspect of adolescent well-being.

12.
Food Chem ; 453: 139627, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38781894

ABSTRACT

Oxidative rancidity of food products and massive consumption of plastic packaging have put the necessity in manufacturing novel antioxidant biodegradable packaging films. A comprehensive investigation was conducted on starch/poly(butylene adipate-co-terephthalate) (PBAT) antioxidant blown films, in which starch acted as a gatekeeper for the controlled release of propyl gallate (PG). PG was well integrated into the matrices and bound to starch molecules by hydrogen bonding. All films showed strong anti-ultraviolet performance, and higher oxygen barrier than the traditional polyethylene film. Increasing starch proportions promoted the swelling of films and the release of PG, thereby causing higher antioxidant activity at the same contact time to free radical solutions. Similar polarity made PG prone to partition and rapid migration into the food simulants with higher ethanol concentration and the high-fat-content peanut butter. The film with 20:80 w/w starch/PBAT proportion and 3% w/w PG content effectively suppressed the oxidation of peanut butter within 300-day storage. Findings demonstrated this strategy for manufacturing starch/PBAT antioxidant films as a long-term active packaging in food industry.

13.
Talanta ; 276: 126285, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38781918

ABSTRACT

The advent of flexible single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) has transformed electronics, providing significant benefits like low operating voltage, reduced power consumption, cost-effectiveness, and improved signal amplification. This study focuses on leveraging these attributes to develop a novel flexible high-sensitivity and energy-efficient chloride ion sensors based on printed flexible SWCNT-TFTs utilizing polymers-sorted semiconducting SWCNTs (sc-SWCNTs) as the active layers and ion liquids-poly(4-vinylphenol as dielectric layers along with the evaporated deposition of aluminum electrodes and printed silver electrodes as the gate and source-drain electrodes, respectively. The sensors exhibit several operational advantages, including low voltage requirements (≤1 V), rapid response speed (5.32 s), significant signal amplification (Up to 702.6 %), low power consumption (0.31 µJ at 1 mmol chloride ion), good repeatability, high sensitivity for both low and high concentrations of chloride ion (up to 100 mmol/L) and excellent mechanical flexibility (No obvious changes after bending for 10,000 times with a 5 mm radius). The detection mechanism of chloride ions was analyzed using X-ray Photoelectron Spectroscopy (XPS). It was found that chloride ions react with silver nanoparticles (AgNPs) to form silver chloride (AgCl) on printed electrodes, impeding carrier transport and reducing the currents in SWCNT TFTs. Importantly, our sensors' compatibility with smart devices allows for real-time monitoring of chloride ion levels in human sweat, offering significant potential for daily health monitoring.

14.
Article in English | MEDLINE | ID: mdl-38783717

ABSTRACT

CONTEXT: Small cohorts of youth with congenital adrenal hyperplasia (CAH) demonstrate increased risk of obesity and poor cardiometabolic health. OBJECTIVE: To determine the odds of cardiometabolic-related diagnoses in youth with CAH compared to matched controls in a cross-sectional analysis in a large, multisite database (PEDSnet). DESIGN: Electronic health record data (2009-2019) were used to determine odds of cardiometabolic-related outcomes based on diagnosis, anthropometric and laboratory data using logistic regression among youth with CAH vs. controls. SETTING: Six PEDSnet sites. PATIENTS OR OTHER PARTICIPANTS: Youth with CAH and >1 outpatient visit in PEDSnet (n=1,647) were propensity-score matched on 8 variables to controls (n=6,588). A subset of youth with classic CAH (n=547, with glucocorticoid and mineralocorticoid prescriptions) were matched to controls (n=2,188). INTERVENTION(S): N/A. MAIN OUTCOME MEASURE(S): Odds of having cardiometabolic-related diagnoses among youth over 2 years with CAH compared to matched controls. RESULTS: Outcomes were calculated for all individuals with CAH (median age at last visit 12.9 years [7.3, 17.6]) and a subset with classic CAH (median age at last visit 11.6 years [4.7, 17.5]) compared to their matched controls. All patients with CAH had higher odds of overweight/obesity (odds ratio [95% confidence interval] 3.63 [3.24,4.07]), hypertension (3.07 [2.60,3.64]), dysglycemia (1.95 [1.35,2.82], dyslipidemia (2.28 [1.79,2.91]) and liver dysfunction (2.30 [1.91,2.76]) compared to matched controls. Patients with classic CAH had higher odds of overweight/obesity (3.21 [2.61,3.93]), hypertension (8.22 [6.71,10.08]), and liver dysfunction (2.11 [1.55,2.89]) compared to matched controls. CONCLUSIONS: Overall, youth with CAH are at increased risk of diagnoses related to worse cardiometabolic health.

15.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1498-1508, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783811

ABSTRACT

To investigate the role of recombinant mussel mucin in wound healing, we aimed to prepare this mucin using Pichia pastoris as the host microbe. Our method involved constructing a genetically engineered strain of P. pastoris that expressed a fusion protein consisting of Mfp-3 and preCol-P peptide segments of mussel. After fermentation and purification, we obtained a pure recombinant mussel mucin product. We then conducted experiments to evaluate its effect at both the cellular and animal levels. At the cellular level, we examined its impact on the proliferation and migration of mouse fibroblast L929. At the animal level, we assessed its ability to promote wound healing after full-layer skin resection in rats. Our results showed that the recombinant mussel mucin protein has a content of 90.28% and a purity of 96.49%. The content of 3,4-dihydroxyphenylalanine (DOPA) was 0.73 wt%, and the endotoxin content was less than 0.5 EU/mg. Importantly, the recombinant mussel mucin protein significantly promoted both the migration and proliferation of mouse fibroblast, as well as the wound healing in rat skin. In conclusion, our findings demonstrate that recombinant mussel mucin has the potential to promote wound healing and can be considered a promising medical biomaterial.


Subject(s)
Wound Healing , Animals , Wound Healing/drug effects , Rats , Mice , Mucins/metabolism , Mucins/genetics , Bivalvia , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Male , Rats, Sprague-Dawley , Saccharomycetales
16.
ACS Nano ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787538

ABSTRACT

The development of large-scale integration of optoelectronic neuromorphic devices with ultralow power consumption and broadband responses is essential for high-performance bionics vision systems. In this work, we developed a strategy to construct large-scale (40 × 30) enhancement-mode carbon nanotube optoelectronic synaptic transistors with ultralow power consumption (33.9 aJ per pulse) and broadband responses (from 365 to 620 nm) using low-work function yttrium (Y)-gate electrodes and the mixture of eco-friendly photosensitive Ag2S quantum dots (QDs) and ionic liquids (ILs)-cross-linking-poly(4-vinylphenol) (PVP) (ILs-c-PVP) as the dielectric layers. Solution-processable carbon nanotube thin-film transistors (TFTs) showed enhancement-mode characteristics with the wide and controllable threshold voltage window (-1 V∼0 V) owing to use of the low-work-function Y-gate electrodes. It is noted that carbon nanotube optoelectronic synaptic transistors exhibited high on/off ratios (>106), small hysteresis and low operating voltage (≤2 V), and enhancement mode even under the illumination of ultraviolet (UV, 365 nm), blue (450 nm), and green (550 nm) to red (620 nm) pulse lights when introducing eco-friendly Ag2S QDs in dielectric layers, demonstrating that they have the strong fault-tolerant ability for the threshold voltage drifts caused by various manufacturing scenarios. Furthermore, some important bionic functions including a high paired pulse facilitation index (PPF index, up to 290%), learning and memory function with the long duration (200 s), and rapid recovery (2 s). Pavlov's dog experiment (retention time up to 20 min) and visual memory forgetting experiments (the duration of high current for 180 s) are also demonstrated. Significantly, the optoelectronic synaptic transistors can be used to simulate the adaptive process of vision in varying light conditions, and we demonstrated the dynamic transition of light adaptation to dark adaptation based on light-induced conditional behavior. This work undoubtedly provides valuable insights for the future development of artificial vision systems.

17.
Regul Toxicol Pharmacol ; 150: 105646, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777300

ABSTRACT

Environmental exposures are the main cause of cancer, and their carcinogenicity has not been fully evaluated, identifying potential carcinogens that have not been evaluated is critical for safety. This study is the first to propose a weight of evidence (WoE) approach based on computational methods to prioritize potential carcinogens. Computational methods such as read across, structural alert, (Quantitative) structure-activity relationship and chemical-disease association were evaluated and integrated. Four different WoE approach was evaluated, compared to the best single method, the WoE-1 approach gained 0.21 and 0.39 improvement in the area under the receiver operating characteristic curve (AUC) and Matthew's correlation coefficient (MCC) value, respectively. The evaluation of 681 environmental exposures beyond IARC list 1-2B prioritized 52 chemicals of high carcinogenic concern, of which 21 compounds were known carcinogens or suspected carcinogens, and eight compounds were identified as potential carcinogens for the first time. This study illustrated that the WoE approach can effectively complement different computational methods, and can be used to prioritize chemicals of carcinogenic concern.

18.
Hortic Res ; 11(5): uhae077, 2024 May.
Article in English | MEDLINE | ID: mdl-38779140

ABSTRACT

How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.

19.
Front Immunol ; 15: 1372959, 2024.
Article in English | MEDLINE | ID: mdl-38690277

ABSTRACT

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Subject(s)
Gene Expression Profiling , Hypertension, Pulmonary , Hypoxia , Single-Cell Analysis , Transcriptome , Animals , Mice , Hypoxia/metabolism , Hypoxia/immunology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Lung/immunology , Lung/pathology , Lung/metabolism
20.
J Chin Med Assoc ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690873

ABSTRACT

BACKGROUND: Liver transplantation is treatment option for patients with end stage liver disease and hepatocellular carcinoma. Renal function deterioration significantly impacts the survival rates of liver recipients, and serum uric acid (SUA) is associated with both acute and chronic renal function disorders. Thus, our study aimed to assess the relationship and predictive value of preoperative SUA level and postoperative acute kidney injury (AKI) in living donor liver transplantation (LDLT). METHODS: We conducted a prospective observational study on 87 patients undergoing LDLT. Blood samples were collected immediately prior to LDLT, and renal function status was followed up for 3 consecutive days postoperatively. RESULTS: Low SUA levels (cutoff value 4.15 mg/dL) were associated with a high risk of early post-transplantation AKI. The area under the curve was 0.73 (sensitivity, 79.2%; specificity, 59.4%). Although not statistically significant, there were no deaths in the non-AKI group but two in the early AKI group secondary to liver graft dysfunction in addition to early AKI within the first month after LDLT. CONCLUSION: AKI after liver transplantation may lead to a deterioration of patient status and increased mortality rates. We determined low preoperative SUA levels as a possible risk factor for early postoperative AK.

SELECTION OF CITATIONS
SEARCH DETAIL
...