Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neuroradiol ; 33(1): 121-127, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35768695

ABSTRACT

PURPOSE: Excessive daytime sleepiness (EDS) is a common non-motor symptom in Parkinson's disease (PD), but its neuropathology remains elusive. Our goal is to explore the potential neural substrates of EDS in a large sample of individuals with PD. METHODS: We recruited 48 PD patients with and 87 PD patients without EDS. We used resting-state functional magnetic resonance imaging to compare amplitudes of low-frequency fluctuations (ALFF) between the two groups. We also explored functional connectivity (FC) between the entire brain and regions where ALFF differed between the two groups as well as FC between selected regions of interest. Age, Part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III) score and use of dopamine receptor agonists were treated as covariates in the comparisons. RESULTS: EDS was associated with significantly lower ALFF in the left angular gyrus, and ALFF in this region correlated negatively with score on the Epworth Sleepiness Scale in patients with PD. EDS was also associated with significantly lower FC between the left angular gyrus and right cerebellum, based on seed-to-voxel and inter-ROI analyses. CONCLUSION: Our results suggest that EDS in PD patients is associated with reduced spontaneous neural activity in the left angular gyrus and with reduced FC between the left angular gyrus and cerebellum. These findings may help understand and treat EDS in PD.


Subject(s)
Disorders of Excessive Somnolence , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Magnetic Resonance Imaging/methods , Disorders of Excessive Somnolence/etiology , Disorders of Excessive Somnolence/complications , Brain/pathology , Parietal Lobe/pathology
2.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234136

ABSTRACT

The grain structure of the selective laser melting additive manufactured parts has been shown to be heterogeneous and spatially non-uniform compared to the traditional manufacturing process. However, the complex formation mechanism of these unique grain structures is hard to reveal using the experimental method alone. In this study, we presented a high-fidelity 3D numerical model to address the grain growth mechanisms during the selective laser melting of 316 stainless steel, including two heating modes, i.e., conduction mode and keyhole mode melting. In the numerical model, the powder-scale thermo-fluid dynamics are simulated using the finite volume method with the volume of fluid method. At the same time, the grain structure evolution is sequentially predicted by the cellular automaton method with the predicted temperature field and the as-melted powder bed configuration as input. The simulation results agree well with the experimental data available in the literature. The influence of the process parameters and the keyhole and keyhole-induced void on grain structure formation are addressed in detail. The findings of this study are helpful to the optimization of process parameters for tailoring the microstructure of fabricated parts with expected mechanical properties.

3.
Insects ; 13(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36292911

ABSTRACT

Spodoptera frugiperda (J. E. Smith), is commonly known as fall armyworm, native to tropical and subtropical regions of America, is an important migratory agricultural pest. It is important to understand the resistance and internal mechanism of action of S. frugiperda against lufenuron in China. Lufenuron is one of the main insecticides recommended for field use in China and has a broad prospect in the future. We conducted a bioassay using the diet-overlay method and found that the current S. frugiperda in China are still at a low level of resistance to lufenuron. Secondly, we examined whether the mutation I1040M (I1042M in Plutella xylostella), associated with lufenuron resistance, was produced in the field. And then we tested the expression of chitin synthase SfCHSA and SfCHSB in different tissues, and the changes of these two genes after lufenuron induction. The results showed that there is still no mutation generation in China and there is a significant change in the expression of SfCHSA under the effect of lufenuron. In conclusion, our study suggests that field S. frugiperda populations in 2019 and 2020 were less resistant to lufenuron. In fall armyworm, chitin synthases included SfCHSA and SfCHSB genes, and after induction treatment with lufenuron, the expression of the SfCHSA gene was significantly increased. In SfCHSA, no mutation has been detected in the site associated with lufenuron resistance. Secondly, in S. frugiperda larvae, the SfCHSA gene was the highest in the head of the larvae, followed by the integument; while the SfCHSB gene was mainly concentrated in the midgut. Therefore, we believe that the SfCHSA gene plays a greater role in the resistance of S. frugiperda to lufenuron than the SfCHSB gene. It is worth noting that understanding the level of resistance to lufenuron in China, the main mechanism of action of lufenuron on larvae, and the mechanism of resistance to lufenuron in S. frugiperda will help in crop protection as well as in extending the life span of this insecticide.

4.
Front Neurosci ; 16: 905709, 2022.
Article in English | MEDLINE | ID: mdl-35937868

ABSTRACT

Background: The "postural instability/gait difficulty" (PIGD) and "tremor-dominant" (TD) motor subtypes of Parkinson's disease (PD) differ in their clinical manifestations. The neurological basis of these differences is unclear. Methods: We performed voxel-based morphometric analysis and measured amplitudes of low-frequency fluctuation (ALFF) on 87 PIGD patients and 51 TD patients. We complemented this neuroanatomical comparison with seed-to-voxel analysis to explore differences in functional connectivity. Results: The PIGD group showed significantly smaller gray matter volume in the medial frontal gyrus (mainly on the right side) than the TD group. Across all patients, gray matter volume in the medial frontal gyrus correlated negatively with severity of PIGD symptoms after controlling for age (r = -0.250, p = 0.003), but this correlation was not observed in separate analyses of only PIGD or TD patients. The PIGD group showed greater functional connectivity of the right superior frontal gyrus with the left lingual gyrus, right lateral occipital cortex, and right lingual gyrus. ALFF did not differ significantly between the two groups. Conclusion: Postural instability/gait difficulty may be associated with smaller gray matter volume in medial frontal gyrus than TD, as well as with greater functional connectivity between the right superior frontal gyrus and occipital cortex. These results may help explain the clinical differences between the two motor subtypes of PD.

5.
Neurosci Lett ; 788: 136835, 2022 09 25.
Article in English | MEDLINE | ID: mdl-35963477

ABSTRACT

OBJECTIVE: To explore differences in gray matter volume (GMV) and white matter volume (WMV) between patients with Parkinson's disease (PD) and healthy controls, and to examine whether the structural abnormalities correlate with functional abnormalities. METHODS: T1-weighted magnetic resonance imaging and resting-state functional magnetic resonance imaging (fMRI) were performed on 180 patients with PD and 58 age- and sex-matched healthy controls. We used voxel-based morphometry (VBM) to compare GMV and WMV between groups, and resting-state fMRI to compare amplitudes of low-frequency fluctuations (ALFF) in the structurally abnormal brain regions. RESULTS: Structural neuroimaging showed smaller whole-brain GMV, but not WMV, in patients. Furthermore, VBM revealed smaller GMV in the right superior temporal gyrus (STG) and left frontotemporal space in patients, after correction for multiple comparisons. Patients also showed significantly higher ALFF in the right STG. GMV in the right STG and left frontotemporal space in patients correlated negatively with age and scores on Part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale, but not with PD duration. CONCLUSIONS: Structural atrophy in the frontotemporal lobe may be a useful imaging biomarker in PD, such as for detecting disease progression. Furthermore, this structural atrophy appears to correlate with enhanced spontaneous brain activity. This study associates particular structural and functional abnormalities with PD neuropathology.


Subject(s)
Parkinson Disease , White Matter , Atrophy/pathology , Brain , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/pathology , White Matter/pathology
6.
Pain Ther ; 11(3): 959-970, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35751780

ABSTRACT

INTRODUCTION: Pain in Parkinson's disease is poorly understood, and most patients with pain do not respond to dopaminergic drugs. We aimed to explore the mechanisms of dopa-responsive and -unresponsive pain by comparing such patients against patients without pain in terms of neural activity and functional connectivity in the brain. METHODS: We prospectively examined 31 Parkinson's patients with dopa-responsive pain, 51 with dopa-unresponsive pain and 93 without pain using resting-state functional magnetic resonance imaging. Neural activity was assessed in terms of the amplitude of low-frequency fluctuation, while functional connectivity was assessed based on analysis of regions of interest. RESULTS: Patients with dopa-unresponsive pain showed significantly higher amplitude of low-frequency fluctuation in the right parahippocampal/lingual region than patients with no pain. However, there was no amplitude difference between the dopa-responsive pain group and the no pain group. Patients with dopa-unresponsive pain also differed significantly from patients with no pain in their functional connections between the superior temporal gyrus and other areas of cerebral cortex, between amygdala and thalamus and between the amygdala and putamen. Patients with dopa-responsive pain differed significantly from patients with no pain in their functional connections between temporal fusiform cortex and cerebellum, between precentral gyrus and temporal fusiform cortex and between precentral gyrus and cerebellum. CONCLUSIONS: Regional neural activity and functional connectivity in the brain differ substantially among Parkinson's patients with dopa-unresponsive pain, dopa-responsive pain or no pain. Our results suggest that dopa-responsive and -unresponsive pain may arise through different mechanisms, which may help guide the development of targeted therapies.

7.
Clin Auton Res ; 32(1): 51-58, 2022 02.
Article in English | MEDLINE | ID: mdl-35059875

ABSTRACT

PURPOSE: The etiology of constipation in Parkinson's disease is largely unknown. The aim of this study was to explore changes in regional neural activity and functional connections associated with constipation in a large cohort of individuals with Parkinson's disease. METHODS: We prospectively recruited 106 patients with Parkinson's disease with constipation and 73 patients with Parkinson's disease without constipation. We used resting-state functional magnetic resonance imaging for the first time to measure differences in regional neural activity and functional connections between the two patient groups. RESULTS: Patients with constipation showed significantly higher amplitude of low-frequency fluctuation than patients without constipation in the right dorsal pons extending into the cerebellum and in the right insula. The two types of patients also showed substantial differences in functional connections linking the superior temporal gyrus, particularly the right superior temporal gyrus, with multiple brain regions. CONCLUSION: Regional neural activity and functional connectivity in the brain differ substantially between patients with Parkinson's disease with or without constipation. These findings provide a foundation for understanding the pathophysiology of constipation in Parkinson's disease and for identifying therapeutic targets.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Constipation/complications , Constipation/etiology , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Prospective Studies
8.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 9): o2145, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-21577554

ABSTRACT

The title compound, C(14)H(11)ClN(2)O, was synthesized by the reaction of 2-chloro-benzaldehyde and 2-amino-benzamide in an ionic liquid. The pyrimidine ring adopts a skew-boat conformation and the two benzene rings make a dihedral angle of 87.1 (1)°. In the crystal, N-H⋯O and C-H⋯N hydrogen bonding links the mol-ecules along b.

SELECTION OF CITATIONS
SEARCH DETAIL
...