Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38043608

ABSTRACT

INTRODUCTION: Surgical ventricular reconstruction (SVR) is an alternative therapeutic approach in patients with refractory heart failure (HF), but residual remodeling after SVR limits the improvement of HF. Recently, we reported that SVR may act as an environmental cue to reactivate endogenous proliferation of cardiomyocytes; however, it is unclear whether enhancing endogenous cardiomyocyte regeneration further improves HF after SVR. OBJECTIVES: We aimed to explore whether circular RNAs (circRNAs) would involved in SVR and their mechanisms. METHODS: Male C57BL/6 mice were subjected to myocardial infarction (MI) or sham surgery. Four weeks later, MI mice with a large ventricular aneurysm underwent SVR or a second open-chest operation only. Echocardiography and histological analysis were used to evaluate heart function, cardiac remodeling, and myocardial regeneration. Sequencing of circular RNAs, RNA immunoprecipitation, RNA pulldown, and luciferase reporter assay were used to explore the underlying mechanisms. RESULTS: SVR markedly attenuated cardiac remodeling and induced cardiomyocyte regeneration, as evidenced by positive staining of Ki-67, phospho-histone H3 (pH3), and Aurora B in the plication zone, but significant residual remodeling still existed in comparison with the sham group. Sequencing results showed that SVR altered the expression profile of cardiac circRNAs, and circMap4k2 was identified as the most upregulated one. After characterizing circMap4k2, we noted that overexpression of circMap4k2 significantly promoted proliferation of cardiomyocytes in cultured neonatal rat cardiomyocytes and silencing of circMap4k2 significantly inhibited it; similar results were obtained in SVR-treated MI mice but not in MI mice without SVR treatment. Residual cardiac remodeling after SVR was further attenuated by circMap4k2 overexpression. CircMap4k2 bound with miR-106a-3p and inhibited cardiomyocyte proliferation by targeting a downstream effector of the antizyme inhibitor 1 (Azin1) gene. CONCLUSIONS: CircMap4k2 acts as an environmental cue and targets the miR-106a-3p/Azin1 pathway to increase cardiac regeneration in the plication zone and attenuate residual remodeling after SVR.

2.
Cell Mol Life Sci ; 80(9): 267, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37626241

ABSTRACT

Previous studies show a woman's pregnancy is correlated with post-reproductive longevity, and nulliparity is associated with higher risk of incident heart failure, suggesting pregnancy likely exerts a cardioprotection. We previously reported a cardioprotective phenomenon termed myocardial hypertrophic preconditioning, but it is unknown whether pregnancy-induced physiological hypertrophic preconditioning (PHP) can also protect the heart against subsequent pathological hypertrophic stress. We aimed to clarify the phenomenon of PHP and its mechanisms. The pluripara mice whose pregnancy-induced physiological hypertrophy regressed and the nulliparous mice underwent angiotensin II (Ang II) infusion or transverse aortic constriction (TAC). Echocardiography, invasive left ventricular hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. Silencing or overexpression of Foxo3 by adeno-associated virus was used to investigate the role of FoxO3a involved in the antihypertrophic effect. Compared with nulliparous mice, pathological cardiac hypertrophy induced by Ang II infusion, or TAC was significantly attenuated and heart failure induced by TAC was markedly improved in mice with PHP. Activation of FoxO3a was significantly enhanced in the hearts of postpartum mice. FoxO3a inhibited myocardial hypertrophy by suppressing signaling pathway of phosphorylated glycogen synthase kinase-3ß (p-GSK3ß)/ß-catenin/Cyclin D1. Silencing or overexpression of Foxo3 attenuated or enhanced the anti-hypertrophic effect of PHP in mice with pathological stimulation. Our findings demonstrate that PHP confers resistance to subsequent hypertrophic stress and slows progression to heart failure through activation of FoxO3a/GSK3ß pathway.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Peptide Hormones , Animals , Female , Mice , Pregnancy , Angiotensin II , Cardiomegaly/genetics , Glycogen Synthase Kinase 3 beta/genetics , Heart
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 831-841, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37232575

ABSTRACT

Systemic and pulmonary arterial hypertension (PAH) can induce left and right ventricular hypertrophy, respectively, but common therapeutic targets for both left and right hypertrophy are limited. In this study, we attempt to explore potential common therapeutic targets and screen out potential target drugs for further study. Cardiac mRNA expression profiles in mice with transverse aortic constriction (TAC) and pulmonary arterial constriction (PAC) are obtained from online databases. After bioinformatics analyses, we generate TAC and PAC mouse models to validate the phenotypes of cardiac remodelling as well as the identified hub genes. Bioinformatics analyses show that there are 214 independent differentially expressed genes (DEGs) in GSE136308 (TAC related) and 2607 independent DEGs in GSE30922 (PAC related), while 547 shared DEGs are associated with the function of the extracellular matrix (ECM) or involved in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and ECM-receptor interactions. We identifyd Fn1, Il6, Col1a1, Igf1, Col1a2, Timp1, Col3a1, Cd44, Ctgf and Postn as hub genes of the shared DEGs, and most of them are associated with myocardial fibrosis. Those hub genes and phenotypes of cardiac remodelling are validated in our TAC and PAC mouse models. Furthermore, we identify dehydroisoandrosterone (DHEA), iloprost and 4,5-dianilinophthalimide (DAPH) as potential therapeutic drugs targeting both left and right ventricular hypertrophy and validate the effect of DHEA. These findings suggest that DHEA could be an effective drug for pressure overload-induced left or right ventricular hypertrophy by regulating the shared hub differentially expressed genes associated with fibrosis.


Subject(s)
Hypertrophy, Left Ventricular , Pulmonary Arterial Hypertension , Mice , Animals , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Right Ventricular/genetics , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/genetics , Ventricular Remodeling , Phosphatidylinositol 3-Kinases , Cardiomegaly , Computational Biology , Dehydroepiandrosterone , Fibrosis , Mice, Inbred C57BL
4.
Biomed Pharmacother ; 162: 114569, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37001183

ABSTRACT

BACKGROUND: Right ventricular (RV) function is a major prognostic factor in patients with cardiopulmonary disease. Effective medical therapies are available for left heart failure, but they are usually less effective or even ineffective in right heart failure. Here, we tested the hypothesis that LCZ696 (sacubitril/valsartan) can attenuate pressure overload-induced RV remodeling by inhibiting pyruvate dehydrogenase kinase 4 (PDK4). METHODS: Adult male C57 mice were subjected to transverse aortic constriction (TAC), pulmonary artery constriction (PAC), or sham surgery. Bioinformatics analysis was used to screen for common differentially expressed genes (DEGs) between TAC and PAC. Chemical compounds targeting DEGs were predicted by molecular docking analysis. Effects of LCZ696 on PAC-induced RV remodeling and the associated PDK4-related mechanisms were investigated. RESULTS: We found 60 common DEGs between PAC and TAC, and Pdk4 was one of the downregulated DEGs. From 47 chemical compounds with potential cardiovascular activity and PDK4 protein binding ability, we selected LCZ696 to treat PAC-induced RV remodeling because of its high docking score for binding PDK4. Compared with vehicle-treated PAC mice, LCZ696-treated mice had significantly smaller RV wall thickness and RV diameters, less myocardial fibrosis, lower expression of PDK4 protein, and less phosphorylation of glycogen synthase kinase-3ß (p-GSK3ß). In PAC mice, overexpression of Pdk4 blocked the inhibitory effect of LCZ696 on RV remodeling, whereas conditional knockout of Pdk4 attenuated PAC-induced RV remodeling. CONCLUSIONS: Pdk4 is a common therapeutic target for pressure overload-induced left ventricular and RV remodeling, and LCZ696 attenuates RV remodeling by downregulating Pdk4 and inhibiting PDK4/p-GSK3ß signal.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Male , Mice , Animals , Hypertension, Pulmonary/drug therapy , Glycogen Synthase Kinase 3 beta , Ventricular Remodeling , Molecular Docking Simulation , Valsartan/therapeutic use , Biphenyl Compounds/therapeutic use , Drug Combinations , Disease Models, Animal
5.
J Adv Res ; 46: 113-121, 2023 04.
Article in English | MEDLINE | ID: mdl-35718079

ABSTRACT

INTRODUCTION: We previously reported a phenomenon called exercise hypertrophic preconditioning (EHP), the underlying mechanisms of which need further clarification. OBJECTIVES: We aimed to investigate whether circular RNAs (circRNAs) are involved in EHP. METHODS: CircRNA sequencing of myocardial tissue was performed in male C57BL/6 mice with EHP and sedentary. Bioinformatics analysis and Sanger sequencing were used to screen hub circRNA expression and to detect full-length circRNAs, respectively. Loss-of-function analyses were conducted to assess the effects of circ-Ddx60 (c-Ddx) on EHP. After 21 days of swimming training or resting, mice underwent transverse aortic constriction (TAC) or sham surgery. Echocardiography, invasive hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. The presence of interaction between c-Ddx and proteins was investigated using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). RESULTS: In this study, we identified a novel circRNA, named c-Ddx that was preferentially expressed in myocardial tissue and significantly up-regulated in EHP mice. Silencing of c-Ddx attenuated the antihypertrophic effect of EHP and worsened heart failure in mice that underwent TAC. ChIRP-MS and molecular docking analysis validated the combination of c-Ddx and eukaryotic elongation factor 2 (eEF2). Mechanistically, c-Ddx silencing inhibited the increase of phosphorylation of eEF2 and its upstream AMP-activated protein kinase (AMPK) induced by EHP. CONCLUSIONS: C-Ddx contributes to the antihypertrophic memory of EHP by binding and activating eEF2, which would provide opportunity to search new therapeutic targets for pathological hypertrophy of heart.


Subject(s)
Aortic Valve Stenosis , RNA, Circular , Animals , Male , Mice , Dichlorodiphenyl Dichloroethylene , Hypertrophy , Mice, Inbred C57BL , Molecular Docking Simulation , RNA, Circular/genetics
6.
Biomed Pharmacother ; 156: 113765, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228368

ABSTRACT

BACKGROUND: Severe heart failure refractory to conventional therapy requires alternative treatment modalities. Surgical ventricular reconstruction (SVR) has been used to reverse cardiac remodeling in post-myocardial infarction (MI) patients with large left ventricular (LV) aneurysm, however, residual LV remodeling and dysfunction remain postoperatively. It is unclear whether SVR recovers response to drug treatment and whether the sodium-glucose co-transporter 2 inhibitor dapagliflozin (DAPA) reverses residual LV remodeling after SVR. METHODS: Adult male C57 mice were subjected to MI or sham surgery. Four-week later, MI mice with LV aneurysm underwent modified SVR or second open-chest sham operation and were randomized to DAPA or vehicle for four-week. Cardiac remodeling, LV function, and the underlying mechanisms were evaluated by echocardiography, invasive LV hemodynamic measurements, mRNA sequencing, and bioinformatics analysis. RESULTS: SVR significantly decreased LV volume; increased myocardial strain, LV pressure change rates and end-systolic elastance; and decreased heart-to-body weight ratio and myocardial fibrosis. However, significant residual cardiac remodeling remained. DAPA significantly attenuated residual cardiac remodeling and improved LV function in SVR mice but did not have curative effects in non-SVR mice. Of the 1532 genes differentially expressed in SVR and MI mice, 1037 were associated with cardiac metabolism; Src, Crebbp, Fn1, Grb2, and Mapk14 were the top 5 hub genes. Unlike sham surgery, MI upregulated those 5 genes, and treatment with SVR + DAPA normalized their expression. CONCLUSIONS: SVR restores therapeutic response in the post-MI heart with large LV aneurysm, and DAPA attenuates residual cardiac remodeling after SVR by normalizing some cardiac metabolism-related hub genes.


Subject(s)
Aneurysm , Myocardial Infarction , Sodium-Glucose Transporter 2 Inhibitors , Animals , Male , Mice , Aneurysm/complications , Aneurysm/metabolism , Cardiomegaly/metabolism , Myocardium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...