Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Analyst ; 149(9): 2629-2636, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38563459

ABSTRACT

Cell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly located and identified via the CA module-based cell detection network, and then associated and tracked via a cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and 65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features, which could further help in understanding the complicated and diverse cell migration processes.


Subject(s)
Algorithms , Cell Movement , Cell Tracking , Cell Tracking/methods , Humans , Image Processing, Computer-Assisted/methods
2.
Microsyst Nanoeng ; 10: 11, 2024.
Article in English | MEDLINE | ID: mdl-38261871

ABSTRACT

This paper presents a high-performance MEMS accelerometer with a DC/AC electrostatic stiffness tuning capability based on double-sided parallel plates (DSPPs). DC and AC electrostatic tuning enable the adjustment of the effective stiffness and the calibration of the geometric offset of the proof mass, respectively. A dynamical model of the proposed accelerometer was developed considering both DC/AC electrostatic tuning and the temperature effect. Based on the dynamical model, a self-centering closed loop is proposed for pulling the reference position of the force-to-rebalance (FTR) to the geometric center of DSPP. The self-centering accelerometer operates at the optimal reference position by eliminating the temperature drift of the readout circuit and nulling the net electrostatic tuning forces. The stiffness closed-loop is also incorporated to prevent the pull-in instability of the tuned low-stiffness accelerometer under a dramatic temperature variation. Real-time adjustments of the reference position and the DC tuning voltage are utilized to compensate for the residue temperature drift of the proposed accelerometer. As a result, a novel controlling approach composed of a self-centering closed loop, stiffness-closed loop, and temperature drift compensation is achieved for the accelerometer, realizing a temperature drift coefficient (TDC) of approximately 7 µg/°C and an Allan bias instability of less than 1 µg.

3.
Cardiovasc Diabetol ; 23(1): 12, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184606

ABSTRACT

BACKGROUND: Abnormal lipid metabolism poses a risk for prediabetes. However, research on lipid parameters used to predict the risk of prediabetes is scarce, and the significance of traditional and untraditional lipid parameters remains unexplored in prediabetes. This study aimed to comprehensively evaluate the association between 12 lipid parameters and prediabetes and their diagnostic value. METHODS: This cross-sectional study included data from 100,309 Chinese adults with normal baseline blood glucose levels. New onset of prediabetes was the outcome of concern. Untraditional lipid parameters were derived from traditional lipid parameters. Multivariate logistic regression and smooth curve fitting were used to examine the nonlinear relationship between lipid parameters and prediabetes. A two-piecewise linear regression model was used to identify the critical points of lipid parameters influencing the risk of prediabetes. The areas under the receiver operating characteristic curve estimated the predictive value of the lipid parameters. RESULTS: A total of 12,352 participants (12.31%) were newly diagnosed with prediabetes. Following adjustments for confounding covariables, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol were negatively correlated with prediabetes risk. Conversely, total cholesterol, triglyceride (TG), lipoprotein combine index (LCI), atherogenic index of plasma (AIP), non-HDL-C, atherogenic coefficient, Castelli's index-I, remnant cholesterol (RC), and RC/HDL-C ratio displayed positive correlations. In younger adults, females, individuals with a family history of diabetes, and non-obese individuals, LCI, TG, and AIP exhibited higher predictive values for the onset of prediabetes compared to other lipid profiles. CONCLUSION: Nonlinear associations were observed between untraditional lipid parameters and the risk of prediabetes. The predictive value of untraditional lipid parameters for prediabetes surpassed that of traditional lipid parameters, with LCI emerging as the most effective predictor for prediabetes.


Subject(s)
Prediabetic State , Adult , Female , Humans , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Retrospective Studies , Cross-Sectional Studies , Cholesterol, HDL , Triglycerides , China/epidemiology
4.
Angiology ; : 33197231190421, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37470395

ABSTRACT

Contrast-associated acute kidney injury (CA-AKI) is a familiar complication following percutaneous coronary intervention (PCI). The present study evaluated the predictive value of the De Ritis ratio for CA-AKI and its association with long-term clinical outcomes in patients undergoing emergency PCI. Overall, 546 patients were included in this study. The De Ritis ratio was calculated by aspartate aminotransferase/alanine aminotransferase activity. The De Ritis ratios in the CA-AKI patients were significantly higher than the non-CA-AKI patients [3.74 (2.32, 4.90) vs 1.61 (1.02, 2.53); P < .001]. The De Ritis ratio was an independent risk factor for CA-AKI [odds ratio, 2.243; 95% confidence interval (CI), 1.823-2.759; P < .001]. The area under the ROC curve was .813 (95% CI, .763-.862; P < .001), and the sensitivity and specificity were 67.0% and 82.4%, respectively, when the optimum cut-off value was 2.97. Furthermore, patients in the high De Ritis ratio group (≥1.76) had a significantly greater incidence of primary endpoints [26.7% (73/273) vs 13.2% (36/273); P < .001], and the high De Ritis ratio was an independent predictor for primary endpoints (hazard ratio, 1.888, 95% CI, 1.235-2.887; P = .003). In conclusion, the De Ritis Ratio is associated with CA-AKI prediction and long-term clinical outcomes in patients undergoing emergency PCI.

5.
RSC Adv ; 13(31): 21414-21420, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37465577

ABSTRACT

The simple and sensitive detection of miRNA-122 in blood is crucially important for early hepatocellular carcinoma (HCC) diagnosis. In this work, a platinum microelectrode (PtµE) was prepared and electrodeposited with molybdenum disulfide (MoS2) and gold nanoparticles (AuNP), respectively, and denoted as PtµE/MoS2/Au. The prepared PtµE/MoS2/Au was used as the microsensor for the detection of miRNA-122 combined with the probe DNA as a biorecognition element which is the complementary strand of miRNA-122. The PtµE/MoS2/Au conjugated with the probe DNA modified with sulfydryl units was used as the micro-biosensor for the detection of miRNA-122. The square wave voltammetry was performed for the quantitative detection of miRNA-122 using [Fe(CN)6]4-/3- as a mediator. Under the optimized conditions, the PtµE/MoS2/Au micro-biosensor shows a linear detection toward miRNA-122 ranging from 10-11 to 10-8 M (S = 6.9 nA dec-1, R2 = 0.9997), and the detection limit is 1.6 × 10-12 M (3σ/b). The PtµE/MoS2/Au micro-biosensor demonstrates good selectivity against other types of proteins and small molecules, and has good reproducibility. Moreover, the PtµE/MoS2/Au micro-biosensor was successfully applied for the measurement of miRNA-122 in real blood samples. Herein, the proposed detection assay could be a potential tool in HCC clinical diagnostics with high sensitivity.

6.
Front Psychiatry ; 14: 1058721, 2023.
Article in English | MEDLINE | ID: mdl-37215667

ABSTRACT

Sleep inertia (SI) is a time period during the transition from sleep to wakefulness wherein individuals perceive low vigilance with cognitive impairments; SI is generally identified by longer reaction times (RTs) in attention tasks immediately after awakening followed by a gradual RT reduction along with waking time. The sluggish recovery of vigilance in SI involves a dynamic process of brain functions, as evidenced in recent functional magnetic resonance imaging (fMRI) studies in within-network and between-network connectivity. However, these fMRI findings were generally based on the presumption of unchanged neurovascular coupling (NVC) before and after sleep, which remains an uncertain factor to be investigated. Therefore, we recruited 12 young participants to perform a psychomotor vigilance task (PVT) and a breath-hold task of cerebrovascular reactivity (CVR) before sleep and thrice after awakening (A1, A2, and A3, with 20 min intervals in between) using simultaneous electroencephalography (EEG)-fMRI recordings. If the NVC were to hold in SI, we hypothesized that time-varying consistencies could be found between the fMRI response and EEG beta power, but not in neuron-irrelevant CVR. Results showed that the reduced accuracy and increased RT in the PVT upon awakening was consistent with the temporal patterns of the PVT-induced fMRI responses (thalamus, insula, and primary motor cortex) and the EEG beta power (Pz and CP1). The neuron-irrelevant CVR did not show the same time-varying pattern among the brain regions associated with PVT. Our findings imply that the temporal dynamics of fMRI indices upon awakening are dominated by neural activities. This is the first study to explore the temporal consistencies of neurovascular components on awakening, and the discovery provides a neurophysiological basis for further neuroimaging studies regarding SI.

7.
BMC Public Health ; 23(1): 313, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774500

ABSTRACT

BACKGROUND: Visceral adiposity index (VAI) has been recognized as a reliable indicator for visceral adiposity. However, it remains largely unexplored on its association with fasting plasma glucose (FPG). The current study aims to explore the association between VAI and FPG using a representative dataset. METHODS: A cross-sectional study was carried out based on the dataset from National Health and Nutrition Examination Survey (NHANES) 2017-2020. Univariate and Multiple linear regression analysis were performed to explore the relationship between VAI and FPG. Generalized additive model (GAM) and smooth curve fitting analysis were performed to explore the nonlinear relationship between VAI and FPG. Receiver operating characteristic (ROC) analysis was used to evaluate the predictive value of VAI for FPG elevation. RESULTS: A total of 4437 participants with complete data were finally included in the research. Individuals were divided into 4 quartiles according to the calculated VAI value: Q1 (VAI<0.69), Q2 (0.69 ≤ VAI < 1.18), Q3 (1.18 ≤ VAI < 2.02) and Q4 (VAI ≥ 2.02). FPG significantly increased with the increasing VAI quartile. Multiple linear regression analysis showed VAI was independently positively associated with FPG after adjusting confounding factors. As a continuous variable, an increase of one unit in VAI was correlated with 0.52 mmol/L (95% CI: 0.41-0.63, p < 0.0001) higher FPG level. As a categorical variable, 4th VAI quartile group was related to 0.71 mmol/L (95% CI: 0.47-0.95, p < 0.001) higher FPG level compared with 1st VAI group. GAM and smooth curve fitting analysis identified the non-linear relationship between VAI and FPG, and 4.02 was identified as the inflection point using two-piecewise linear regression. The positive association between VAI and FPG existed when VAI was lower (ß = 0.73, p < 0.0001) and higher than 4.02 (ß = 0.23, p = 0.0063). ROC analysis indicated VAI has a good predictive value for FPG elevation (AUC = 0.7169, 95% CI: 0.6948-0.7389), and the best threshold of VAI was 1.4315. CONCLUSION: VAI was an independently risk indicator for FPG, and VAI was nonlinearly positively associated with FPG. VAI had a good predictive value for elevated FPG. VAI might become a useful indicator for risk assessment and treatment of hyperglycemia in clinical practice.


Subject(s)
Adiposity , Blood Glucose , Humans , Risk Factors , Nutrition Surveys , Cross-Sectional Studies , Fasting , Intra-Abdominal Fat , Body Mass Index , Obesity, Abdominal/diagnosis , Obesity, Abdominal/epidemiology , Obesity, Abdominal/complications
8.
Article in English | MEDLINE | ID: mdl-36568875

ABSTRACT

Background: Postcontrast acute kidney injury (PC-AKI) is an adverse reaction to iodinated contrast agents. In this study, we investigated the use of fibrinogen-to-albumin ratio (FAR) as a novel inflammatory marker to track the development and progression of PC-AKI in patients with non-ST elevation acute coronary syndrome (NSTE-ACS) after the implantation of drug-eluting stents (DESs). Methods: A total of 872 patients with NSTE-ACS were enrolled in this study. PC-AKI was identified when serum creatinine (SCr) levels increased >26.5 mol/L (0.3 mg/dL) or was 1.5 times the baseline level within 48-72 h of exposure to an iodinated contrast agent. The effects of different variables on PC-AKI were evaluated using univariate regression analysis. Multivariate logistic regression analysis was used to determine the independent predictors of PC-AKI. The predictive value of FAR was assessed by estimating the area under the receiver operating characteristic (ROC) curve. Results: In total, 114 (13.1%) patients developed PC-AKI. The patients with PC-AKI had lower albumin levels (40.5 ± 3.4 vs. 39.0 ± 3.5, P < 0.001), higher fibrinogen levels (3.7 ± 0.6 vs. 4.1 ± 0.5, P < 0.001), and higher FAR levels (9.2 ± 1.7 vs. 10.5 ± 1.7, P < 0.001) than those with non-PC-AKI. There were no significant differences in the preoperative SCr levels between the two groups. After adjusting for confounding factors, FAR was found to be an independent predictor of PC-AKI (OR = 1.478, 95% CI = 1.298-1.684, P < 0.001). ROC analysis revealed that for PC-AKI prediction, the area under the curve for FAR was 0.702. The optimum cut-off value of FAR was 10.0, with a sensitivity of 64.9% and a specificity of 69.8%. Moreover, FAR had a higher predictive value for PC-AKI than the Mehran score (0.702 vs. 0.645). Conclusion: Our study showed that elevated preoperative FAR was closely associated with the development of PC-AKI in patients with NSTE-ACS after implantation of DESs. Therefore, it may be worth monitoring FAR as a guide for using preventive measures to avoid the development of PC-AKI.


Subject(s)
Acute Coronary Syndrome , Acute Kidney Injury , Drug-Eluting Stents , Humans , Acute Coronary Syndrome/chemically induced , Risk Factors , Contrast Media/adverse effects , Acute Kidney Injury/chemically induced , Fibrinogen , Albumins , Retrospective Studies
9.
Front Neural Circuits ; 16: 891825, 2022.
Article in English | MEDLINE | ID: mdl-35814484

ABSTRACT

Single-photon-based head-mounted microscopy is widely used to record the brain activities of freely-moving animals. However, during data acquisition, the free movement of animals will cause shaking in the field of view, which deteriorates subsequent neural signal analyses. Existing motion correction methods applied to calcium imaging data either focus on offline analyses or lack sufficient accuracy in real-time processing for single-photon data. In this study, we proposed an open-source real-time motion correction (RTMC) plug-in for single-photon calcium imaging data acquisition. The RTMC plug-in is a real-time subpixel registration algorithm that can run GPUs in UCLA Miniscope data acquisition software. When used with the UCLA Miniscope, the RTMC algorithm satisfies real-time processing requirements in terms of speed, memory, and accuracy. We tested the RTMC algorithm by extending a manual neuron labeling function to extract calcium signals in a real experimental setting. The results demonstrated that the neural calcium dynamics and calcium events can be restored with high accuracy from the calcium data that were collected by the UCLA Miniscope system embedded with our RTMC plug-in. Our method could become an essential component in brain science research, where real-time brain activity is needed for closed-loop experiments.


Subject(s)
Calcium , Microscopy , Algorithms , Animals , Brain/diagnostic imaging , Brain/physiology , Motion
10.
Oxid Med Cell Longev ; 2022: 7845503, 2022.
Article in English | MEDLINE | ID: mdl-35707273

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.


Subject(s)
Hypertension, Pulmonary , NF-E2-Related Factor 2 , Antioxidants/metabolism , Humans , Hypertension, Pulmonary/drug therapy , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/physiology
11.
Front Endocrinol (Lausanne) ; 13: 817176, 2022.
Article in English | MEDLINE | ID: mdl-35273567

ABSTRACT

Background: Triglyceride-glucose (TyG) index is a reliable and specific biomarker for insulin resistance and is associated with renal dysfunction. The present study sought to explore the relationship between TyG index and the incidence of contrast-induced nephropathy (CIN) in non-ST elevation acute coronary syndrome (NSTE-ACS) patients implanted with drug-eluting stents (DESs). Methods: A total of 1108 participants were recruited to the study and assigned to two groups based on occurrence of CIN. TyG index was calculated as ln [fasting triglycerides (mg/dL) × fasting blood glucose (mg/dL)/2]. Baseline characteristics and incidence of CIN were compared between the two groups. Logistic regression analysis was performed to evaluate the relationship between TyG index and CIN. Results: The results showed that 167 participants (15.1%) developed CIN. Subjects in the CIN group had a significantly higher TyG index compared with subjects in the non-CIN group (8.9 ± 0.7 vs. 9.3 ± 0.7, P<0.001). TyG index was significantly correlated with increased risk of CIN after adjusting for confounding factors irrespective of diabetes mellitus status and exhibited a J-shaped non-linear association. Subgroup analysis showed a significant gender difference in the relationship between TyG index and CIN. Receiver operating characteristic (ROC) curve analysis indicated that the risk assessment performance of TyG index was superior compared with other single metabolic indexes. Addition of TyG index to the baseline model increased the area under the curve from 0.713 (0.672-0.754) to 0.742 (0.702-0.782) and caused a reclassification improvement of 0.120 (0.092-0.149). Conclusion: The findings from the present study show that a high TyG index is significantly and independently associated with incidence of CIN in NSTE-ACS patients firstly implanted with DESs. Routine preoperative assessment of TyG index can alleviate CIN and TyG index provides a potential target for intervention in prevention of CIN.


Subject(s)
Acute Coronary Syndrome , Kidney Diseases , Acute Coronary Syndrome/epidemiology , Blood Glucose/metabolism , Female , Glucose , Humans , Incidence , Male , Retrospective Studies , Risk Factors , Triglycerides
12.
Brain Connect ; 12(9): 835-845, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35343241

ABSTRACT

Introduction: The concept of local sleep refers to the phenomenon of local brain activity that modifies neural networks during unresponsive global sleep. Such network rewiring may differ across spatial scales; however, the global and local alterations in brain systems remain elusive in human sleep. Materials and Methods: We examined cross-scale changes of brain networks in sleep. Functional magnetic resonance imaging data were acquired from 28 healthy participants during nocturnal sleep. We adopted both metrics of connectivity (functional connectivity [FC] and regional homogeneity [ReHo]) and complexity (multiscale entropy) to explore the global and local functionality of the neural assembly across nonrapid eye movement sleep stages. Results: Long-range FC decreased with sleep depth, whereas local ReHo peaked at the N2 stage and reached its lowest level at the N3 stage. Entropy exhibited a general decline at the local scale (Scale 1) as sleep deepened, whereas the coarse-scale entropy (Scale 3) was consistent across stages. Discussion: The negative correlation between Scale-1 entropy and ReHo reflects the enhanced signal regularity and synchronization in sleep, identifying the information exchange at the local scale. The N2 stage showed a distinctive pattern toward local information processing with scrambled long-distance information exchange, indicating a specific time window for network reorganization. Collectively, the multidimensional metrics indicated an imbalanced global-local relationship among brain functional networks across sleep-wake stages.


Subject(s)
Brain Mapping , Brain , Humans , Brain/diagnostic imaging , Entropy , Magnetic Resonance Imaging , Sleep
13.
Colloids Surf B Biointerfaces ; 212: 112378, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35121427

ABSTRACT

The current serious mismatch between the increasing severity of bacterial infections and antibiotic production capacity urgently requires the emergence of novel antimicrobial materials. In this paper, dopamine methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) were polymerized as the monomers into a block copolymer poly(dopamine methacrylamide-block-N-isopropylacrylamide) (P(DA-NIP)) and then encapsulated with polydopamine-coated magnetic nanoparticle clusters (MNC) to produce an antibacterial nanocomposite (MNC@P(DA-NIP)). This nanocomposite has triple responses respectively to light, heat and magnetism, which endow MNC@P(DA-NIP) with the abilities to kill bacteria effectively and capture/release bacteria conveniently. Under near-infrared (NIR) light irradiation, MNC@P(DA-NIP) could significantly elevate the temperature through photothermal conversion. The increased temperature favored both the capture of bacteria on MNC@P(DA-NIP), and the damage of bacterial cells, causing bacterial death almost completely. While low temperatures could promote the release of dead bacteria from the nanocomposites, might through the recovery of the hydrophilic state of the outlayer PNIPAM. Moreover, thanks to the magnetic responsibility, MNC@P(DA-NIP) could be easily separated from the bacterial cells and perform better biofilm penetration. The results showed that the antibacterial effect of MNC@P(DA-NIP) was 3.5 times higher than that of MNC, and the recycling capacity of MNC@P(DA-NIP) was better than MNC@PDA. What's more, MNC@P(DA-NIP) possessed the excellent anti-biofilm properties under magnetic field (MF) and NIR. The most important features of the triple-responsive nanocomposites are excellent antibacterial effect, good recyclability and easy preparation, which provide the nanocomposites with great potential in eliminating harmful bacterial cells.


Subject(s)
Anti-Infective Agents , Nanocomposites , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Hydrogels/pharmacology
14.
Plant Physiol ; 189(2): 889-905, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35188194

ABSTRACT

Mediating induced abscisic acid (ABA) biosynthesis is important for enhancing plant stress tolerance. Here, we found that rice (Oryza sativa L.) osa-miR2105 (miR2105) and the Stress/ABA-activated protein kinase (OsSAPK10) coordinately regulate the rice basic region-leucine zipper transcription factor (bZIP TF; OsbZIP86) at the posttranscriptional and posttranslational levels to control drought-induced ABA biosynthesis via modulation of rice 9-cis-epoxycarotenoid dioxygenase (OsNCED3) expression. OsbZIP86 expression is regulated by miR2105-directed cleavage of the OsbZIP86 mRNA. OsbZIP86 encodes a nuclear TF that binds to the promoter of the ABA biosynthetic gene OsNCED3. OsSAPK10 can phosphorylate and activate OsbZIP86 to enhance the expression of OsNCED3. Under normal growth conditions, altered expression of miR2105 and OsbZIP86 displayed no substantial effect on rice growth. However, under drought conditions, miR2105 knockdown or OsbZIP86 overexpression transgenic rice plants showed higher ABA content, enhanced tolerance to drought, lower rates of water loss, and more stomatal closure of seedlings, compared with wild-type rice Zhonghua 11; in contrast, miR2105 overexpression, OsbZIP86 downregulation, and OsbZIP86 knockout plants displayed opposite phenotypes. Collectively, our results show that the "miR2105-(OsSAPK10)-OsbZIP86-OsNCED3" module regulates the drought-induced ABA biosynthesis without penalty on rice growth under normal conditions, suggesting candidates for improving drought tolerance in rice.


Subject(s)
Oryza , Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6402-6405, 2021 11.
Article in English | MEDLINE | ID: mdl-34892577

ABSTRACT

With the development of calcium imaging, neuroscientists have been able to study neural activity with a higher spatial resolution. However, the real-time processing of calcium imaging is still a big challenge for future experiments and applications. Most neuroscientists have to process their imaging data offline due to the time-consuming of most existing calcium imaging analysis methods. We proposed a novel online neural signal processing framework for calcium imaging and established an Optical Brain-Computer Interface System (OBCIs) for decoding neural signals in real-time. We tested and evaluated this system by classifying the calcium signals obtained from the primary motor cortex of mice when the mice were performing a lever-pressing task. The performance of our online system could achieve above 80% in the average decoding accuracy. Our preliminary results show that the online neural processing framework could be applied to future closed-loop OBCIs studies.


Subject(s)
Brain-Computer Interfaces , Motor Cortex , Animals , Calcium , Mice , Online Systems , Signal Processing, Computer-Assisted
16.
Biomacromolecules ; 22(11): 4535-4543, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34609837

ABSTRACT

We report on the production of a flame-resistant xanthan gum (XG)-based hydrogel formulation, which could be directly applied onto the skin for protection against burning projectiles. The hydrogel cream represents an efficient use of XG and starch, both of which are biodegradable, reusable natural materials and are also GRAS-certified. The flame-retardant agent resorcinol bis(diphenyl phosphate) (RDP) was shown to be nontoxic to cells in vitro when adsorbed directly onto the starch delivery vehicle. Three hydrogel formulations were studied, the pure XG hydrogel, commercial FireIce hydrogel, and RDP-XG/RDP-starch hydrogel. After application of a direct flame for 150 s, the RDP-XG/RDP-starch hydrogel produced a thick char layer, which was easily removed, showing undamaged chicken skin and tissue underneath. In contrast, complete burning of skin and tissue was observed on untreated control samples and those covered with FireIce and pure XG hydrogels. The thermal protective performance test was also performed, where the heat transfer was measured as a function of time for all three hydrogels. The RDP-XG/RDP-starch hydrogel was able to prolong the protection time before obtaining a second-degree burn for 103 s, which is double that for FireIce and triple that for the pure XG hydrogel. The model proposed involves endothermic reactions, producing char and burning "cold", as opposed to simply relying on the adsorbed water in the hydrogel for burn protection.


Subject(s)
Flame Retardants , Hydrogels , Biphenyl Compounds , Phosphates , Polysaccharides, Bacterial , Resorcinols , Starch
17.
Biomed Res Int ; 2020: 1860268, 2020.
Article in English | MEDLINE | ID: mdl-32879878

ABSTRACT

Previous studies showed that fibrinogen-to-albumin ratio (FAR) regarded as a novel inflammatory and thrombotic biomarker was the risk factor for coronary artery disease (CAD). In this study, we sought to evaluate the relationship between FAR and severity of CAD, long-term prognosis in non-ST elevation acute coronary syndrome (NSTE-ACS) patients firstly implanted with drug-eluting stent (DES). A total of 1138 consecutive NSTE-ACS patients firstly implanted with DES from January 2017 to December 2018 were recruited in this study. Patients were divided into tertiles according to FAR levels (Group 1: ≤8.715%; Group 2: 8.715%~10.481%; and Group 3: >10.481%). The severity of CAD was evaluated using the Gensini Score (GS). The endpoints were major adverse cardiovascular events (MACE), including all-cause mortality, myocardial reinfarction, and target vessel revascularization (TVR). Positive correlation was detected by Spearman's rank correlation coefficient analysis between FAR and GS (r = 0.170, P < 0.001). On multivariate logistic analysis, FAR was an independent predictor of severe CAD (OR: 1.060; 95% CI: 1.005~1.118; P < 0.05). Multivariate Cox regression analysis indicated that FAR was an independent prognostic factor for MACE at 30 days, 6 months, and 1 year after DES implantation (HR: 1.095; 95% CI: 1.011~1.186; P = 0.025. HR: 1.076; 95% CI: 1.009~1.147; P = 0.026. HR: 1.080; 95% CI: 1.022~1.141; P = 0.006). Furthermore, adding FAR to the model of established risk factors, the C-statistic increased from 0.706 to 0.720, 0.650 to 0.668, and 0.611 to 0.632, respectively. And the models had incremental prognostic value for MACE, especially for 1-year MACE (NRI: 13.6% improvement, P = 0.044; IDI: 0.6% improvement, P = 0.042). In conclusion, FAR was associated independently with the severity of CAD and prognosis, helping to improve risk stratification in NSTE-ACS patients firstly implanted with DES.


Subject(s)
Acute Coronary Syndrome/etiology , Coronary Artery Disease/etiology , Fibrinogen/analysis , Serum Albumin/analysis , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/therapy , Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Coronary Artery Disease/blood , Coronary Artery Disease/therapy , Creatine Kinase, MB Form/blood , Drug-Eluting Stents , Electrocardiography , Female , Humans , Incidence , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors , Troponin I/blood
18.
J Plant Physiol ; 246-247: 153139, 2020.
Article in English | MEDLINE | ID: mdl-32114415

ABSTRACT

Rice tillering, which determines the panicle number per plant, is an important agronomic trait for grain production. In higher plants, ascorbic acid (Asc) plays a major role in ROS-scavenging activity. l-Galactono-1, 4-lactone dehydrogenase (GalLDH, EC1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Previously, we have reported that homozygous L-GalLDH-suppressed transgenic rice plants (GI) display a reduced tiller number and a lower level of foliar carotenoids (Car) compared with wild type. Strigolactones (SL), which play an important role in the suppression of shoot branching, are synthesized in the roots of rice plant using Car as substrates. In this paper, the relationship between Asc, SL, the accumulation of H2O2, changes in antioxidant capacity, enzyme activities, and gene transcriptions related to the synthesis of SL were analyzed in transgenic rice plants for L-GalLDH suppressed (GI-1 and GI-2) and overexpressing (GO-2). The results showed that the altered level of Asc in the L-GalLDH transgenic rice plants leads to a change in redox homeostasis, resulting in a marked accumulation of H2O2 and decreased antioxidant capacity in GI-1 and GI-2, but lower H2O2 content and increased antioxidant capacity in GO-2. Meanwhile, the altered level of Asc also leads to altered enzyme activities and gene transcript abundances related to SL synthesis in L-GalLDH transgenics. These observations support the conclusion that Asc influences tiller number in the L-GalLDH transgenics by affecting H2O2 accumulation and antioxidant capacity, and altering those enzyme activities and gene transcript abundances related to SL synthesis.


Subject(s)
Ascorbic Acid/metabolism , Gene Expression Regulation, Plant , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Oryza/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Oryza/enzymology , Oryza/genetics , Oxidoreductases Acting on CH-CH Group Donors , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
19.
Org Lett ; 21(7): 2013-2018, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30817162

ABSTRACT

A copper-catalyzed, 8-aminoquinoline-assisted, one-pot three-component coupling of aryl carboxamides, CO2, and amines has been developed. This protocol proceeds smoothly in the presence of inexpensive CuI and MnO2 at room temperature under atmospheric CO2 pressure, leading to simultaneous construction of C-O and C-N bonds. The reaction displays a broad substrate scope, high functional group tolerance, and excellent monoselectivity, providing an operationally simple method for the synthesis of various O-aryl carbamates.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3054-3057, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946532

ABSTRACT

Brain-machine interfaces (BMIs) have been promising for not only neuroprosthesis research but also brain function investigation. Electrophysiological recording commonly used in traditional BMIs is spatially sparse and lack of information about neuron types and spatial organization. However, optical imaging methods might avoid these limitations by providing dense, spatially organized and annotated with genetic information over a large field of view. Here, we tried to demonstrate the potential of calcium imaging signals obtained through the one-photon microscope in neural decoding. When mice were trained to perform a lever press task to obtain water as rewards, the calcium signals of neurons in their layer 2/3 motor cortex were recorded by microscope. With the calcium signals, we analyzed the neural activity at both single individual neuron and neuronal population level. We found two typical classes of pressing-related neurons and distinct ensemble activity patterns between a pressing movement and baseline. The decoding results further demonstrated that the movement-related information could be more completely specified by population response structure. Our results suggested that neural signals from more types and a larger amount of neurons, are crucial for accurate decoding in BMI applications.


Subject(s)
Brain-Computer Interfaces , Calcium Signaling , Motor Cortex/physiology , Movement , Neurons/physiology , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...