Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Plants (Basel) ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732451

ABSTRACT

DREB has been reported to be involved in plant growth and response to environmental factors. However, the function of DREB in growth and development has not been elucidated in alfalfa (Medicago sativa L.), a perennial tetraploid forage cultivated worldwide. In this study, an ortholog of MtDREB1C was characterized from alfalfa and named MsDREB1C accordingly. MsDREB1C was significantly induced by abiotic stress. The transcription factor MsDREB1C resided in the nucleus and had self-transactivation activity. The MsDREB1C overexpression (OE) alfalfa displayed growth retardation under both long-day and short-day conditions, which was supported by decreased MsGA20ox and upregulated MsGA2ox in the OE lines. Consistently, a decrease in active gibberellin (GA) was detected, suggesting a negative effect of MsDREB1C on GA accumulation in alfalfa. Interestingly, the forage quality of the OE lines was better than that of WT lines, with higher crude protein and lower lignin content, which was supported by an increase in the leaf-stem ratio (LSR) and repression of several lignin-synthesis genes (MsNST, MsPAL1, MsC4H, and Ms4CL). Therefore, this study revealed the effects of MsDREB1C overexpression on growth and forage quality via modifying GA accumulation and lignin synthesis, respectively. Our findings provide a valuable candidate for improving the critical agronomic traits of alfalfa, such as overwintering and feeding value of the forage.

2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731920

ABSTRACT

Expansins, a class of cell-wall-loosening proteins that regulate plant growth and stress resistance, have been studied in a variety of plant species. However, little is known about the Expansins present in alfalfa (Medicago sativa L.) due to the complexity of its tetraploidy. Based on the alfalfa (cultivar "XinjiangDaye") reference genome, we identified 168 Expansin members (MsEXPs). Phylogenetic analysis showed that MsEXPs consist of four subfamilies: MsEXPAs (123), MsEXPBs (25), MsEXLAs (2), and MsEXLBs (18). MsEXPAs, which account for 73.2% of MsEXPs, and are divided into twelve groups (EXPA-I-EXPA-XII). Of these, EXPA-XI members are specific to Medicago trunctula and alfalfa. Gene composition analysis revealed that the members of each individual subfamily shared a similar structure. Interestingly, about 56.3% of the cis-acting elements were predicted to be associated with abiotic stress, and the majority were MYB- and MYC-binding motifs, accounting for 33.9% and 36.0%, respectively. Our short-term treatment (≤24 h) with NaCl (200 mM) or PEG (polyethylene glycol, 15%) showed that the transcriptional levels of 12 MsEXPs in seedlings were significantly altered at the tested time point(s), indicating that MsEXPs are osmotic-responsive. These findings imply the potential functions of MsEXPs in alfalfa adaptation to high salinity and/or drought. Future studies on MsEXP expression profiles under long-term (>24 h) stress treatment would provide valuable information on their involvement in the response of alfalfa to abiotic stress.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Medicago sativa , Phylogeny , Plant Proteins , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Multigene Family , Gene Expression Profiling
3.
PLoS One ; 19(5): e0301891, 2024.
Article in English | MEDLINE | ID: mdl-38709731

ABSTRACT

In the context of the continued advancement of the green economy transition, the proactive pursuit of carbon emissions reduction and the early attainment of carbon neutrality goals have emerged as essential components in promoting high-quality economic development. Not only does it contribute to the creation of a community of human destiny, but it is also vital to the realization of sustainable development for human civilization. A dynamic evolutionary game model, which encompasses the interactions among government, enterprises, and the public, was constructed to examine the inherent impact mechanisms of the behavior of three players on the development of a green economy under the context of energy saving and emission reduction subsidies. The results showed that the incentive and punishment mechanisms served as effective tools for harmonizing the interests of system members. Within the mechanisms, the public demonstrated a higher sensitivity to rewards, while enterprises exhibited greater responsiveness to fines. Consequently, the government could influence the behavior of enterprises by incentivizing the public to serve as a third-party inquiry and oversight body. Simultaneously, the government could encourage enterprises to expedite green technology innovation by employing a combination of incentive and punishment mechanisms.


Subject(s)
Industry , China , Humans , Conservation of Energy Resources , Sustainable Development , Economic Development , Environmental Policy
4.
Curr Issues Mol Biol ; 46(4): 2961-2974, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38666915

ABSTRACT

Changes in keratin gene expression and spatiotemporal regulation determine the compositional content and cellular localization of wool keratin, thereby affecting wool traits. Therefore, keratin gene family member 32 (KRT32) was selected for a study using RT-qPCR, immunofluorescence, and penta-primer amplification refractory mutation system (PARMS) techniques. The results showed that KRT32 mRNA was highly expressed in the skin and localized to the inner root sheath (IRS), outer root sheath (ORS) and dermal papilla (DP). Sequencing results identified eight SNPs in KRT32, and association analyses revealed that the variations were significantly associated with multiple traits in wool (p < 0.05), including MFD, CF and MFC. The constructed haplotype combination H2H3 has higher CF and smaller MFD than other haplotype combination (p < 0.05). In conclusion, KRT32 can be used as a candidate gene for molecular genetic improvement of wool in Gansu Alpine Fine-wool sheep.

5.
Mol Plant ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38678365

ABSTRACT

Given the escalating impact of climate change on agriculture and food security, gaining insights into the evolutionary dynamics of climatic adaptation and uncovering climate-adapted variation empower the breeding of climate-resilience crops to face future climate change. Alfalfa (Medicago sativa subsp. sativa), the queen of forages with remarkable adaptability across diverse global environments, is an excellent model for investigating species' responses to climate change. We conducted population genomic analyses to unravel alfalfa's climatic adaptation and genetic susceptibility to future climate change, utilizing genome resequencing data from 702 accessions of 24 Medicago species. We found that interspecific genetic exchange has fueled the gene pool of alfalfa, particularly enriching defense and stress response genes. Inter-subspecific introgression between Medicago sativa subsp. falcata (subsp. falcata) and alfalfa not only aids alfalfa's climatic adaptation but also introduces genetic burden. A total of 1671 genes were associated with climatic adaptation, and 5.7% of them were introgression from subsp. falcata. Integrating climate-associated variants and climate data, we identified vulnerable populations to future climate change, particularly in higher latitudes of the northern hemisphere, serving as a clarion call for targeted conservation initiatives and breeding efforts. Moreover, we unveil pre-adaptive populations demonstrating heightened resilience to climate fluctuations, illuminating a pathway for future breeding strategies. This study enhances our understanding of alfalfa's local adaptation and facilitates breeding of climate-resilient cultivars, contributing to effective agricultural strategies facing future climate change.

6.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612844

ABSTRACT

In addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, JAK2 also affects milk fat synthesis. However, to date, there have been no reports on the effect of JAK2 on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine JAK2 was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated. The CDS region of ovine JAK2, 3399 bp in length, was cloned and its authenticity was validated by analyzing its sequence similarity with JAK2 sequences from other animal species using a phylogenetic tree. JAK2 was found to be expressed in six ovine tissues, with the highest expression being in the mammary gland. Over-expressed JAK2 and three groups of JAK2 interference sequences were successfully transfected into OMECs identified by immunofluorescence staining. When compared with the negative control (NC) group, the viability of OMECs was increased by 90.1% in the pcDNA3.1-JAK2 group. The over-expression of JAK2 also increased the number and ratio of EdU-labeled positive OMECs, as well as the expression levels of three cell proliferation marker genes. These findings show that JAK2 promotes the viability and proliferation of OMECs. Meanwhile, the triglyceride content in the over-expressed JAK2 group was 2.9-fold higher than the controls and the expression levels of four milk fat synthesis marker genes were also increased. These results indicate that JAK2 promotes milk fat synthesis. Over-expressed JAK2 significantly up-regulated the expression levels of casein alpha s2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3) but down-regulated casein alpha s1 (CSN1S1) expression. In contrast, small interfered JAK2 had the opposite effect to JAK2 over-expression on the viability, proliferation, and milk fat and milk protein synthesis of OMECs. In summary, these results demonstrate that JAK2 promotes the viability, proliferation, and milk fat synthesis of OMECs in addition to regulating casein expression in these cells. This study contributes to a better comprehension of the role of JAK2 in the lactation performance of sheep.


Subject(s)
Caseins , Milk , Female , Animals , Sheep , Caseins/genetics , Phylogeny , Milk Proteins , Epithelial Cells
7.
Sci Rep ; 14(1): 5260, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438565

ABSTRACT

Studies of preadipocyte differentiation and fat deposition in sheep have mainly focused on functional genes, and with no emphasis placed on the role that long non-coding RNAs (lncRNAs) may have on the activity of those genes. Here, the expression profile of lncRNAs in ovine preadipocyte differentiation was investigated and the differentially expressed lncRNAs were screened on day 0 (D0), day 2(D2) and day 8(D8) of ovine preadipocyte differentiation, with their target genes being predicted. The competing endogenous RNA (ceRNA) regulatory network was constructed by GO and KEGG enrichment analysis for functional annotation, and some differentially expressed lncRNAs were randomly selected to verify the RNA-Seq results by RT-qPCR. In the study, a total of 2517 novel lncRNAs and 3943 known lncRNAs were identified from ovine preadipocytes at the three stages of differentiation, with the highest proportion being intergenic lncRNAs. A total of 3455 lncRNAs were expressed at all three stages of preadipocyte differentiation, while 214, 226 and 228 lncRNAs were uniquely expressed at day 0, day 2 and day 8, respectively. By comparing the expression of the lncRNAs between the three stages of differentiation stages, a total of 405, 272 and 359 differentially expressed lncRNAs were found in D0-vs-D2, D0-vs-D8, and D2-vs-D8, respectively. Functional analysis revealed that the differentially expressed lncRNAs were enriched in signaling pathways related to ovine preadipocyte differentiation, such as mitogen-activated protein kinase (MAPK) pathway, the phosphoinositide 3-kinase protein kinase B (PI3K-Akt) pathway, and the transforming growth factor beta (TGF-ß) pathway. In summary, lncRNAs from preadipocytes at different stages of differentiation in sheep were identified and screened using RNA-Seq technology, and the regulatory mechanisms of lncRNAs in preadipocyte differentiation and lipid deposition were explored. This study provides a theoretical reference for revealing the roles of lncRNAs in ovine preadipocyte differentiation and also offers a theoretical basis for further understanding the regulatory mechanisms of ovine preadipocyte differentiation.


Subject(s)
RNA, Long Noncoding , Animals , Sheep/genetics , RNA, Long Noncoding/genetics , Phosphatidylinositol 3-Kinases , Mitogen-Activated Protein Kinases , Phosphatidylinositol 3-Kinase , RNA-Seq
8.
Diagnostics (Basel) ; 14(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38472929

ABSTRACT

The prevalence of substantial inflammation or fibrosis in treatment-naïve patients with chronic hepatitis B (CHB) and normal alanine transaminase (ALT) levels is high. A retrospective analysis was conducted on 559 consecutive patients with hepatitis B virus infection, who underwent liver biopsy, to investigate the value of noninvasive models based on routine serum markers for evaluating liver histology in CHB patients with normal or mildly elevated ALT levels and to provide treatment guidance. After comparing 55 models, we identified the top three models that exhibited excellent performance. The APGA model, based on the area under the receiver operating characteristic curve (AUROC), demonstrated a superior ability to evaluate significant (AUROC = 0.750) and advanced fibrosis (AUROC = 0.832) and demonstrated a good performance in assessing liver inflammation (AUROCs = 0.779 and 0.874 for stages G ≥ 2 and G ≥ 3, respectively). APGA also exhibited significant correlations with liver inflammation and fibrosis stage (correlation coefficients, 0.452 and 0.405, respectively (p < 0.001)). When the patients were stratified into groups based on HBeAg status and ALT level, APGA consistently outperformed the other 54 models. The other top two models, GAPI and XIE, also outperformed models based on other chronic hepatitis diseases. APGA may be the most suitable option for detecting liver fibrosis and inflammation in Chinese patients with CHB.

9.
Plant Physiol Biochem ; 209: 108542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531119

ABSTRACT

High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.


Subject(s)
Arabidopsis , Medicago truncatula , Transcription Factors/genetics , Transcription Factors/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Salt Tolerance , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Stress, Physiological/genetics , Germination/genetics
10.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338874

ABSTRACT

Homobox C13 (Hoxc13) is an important transcription factor in hair follicle cycle development, and its deletion had been found in a variety of animals leading to abnormal hair growth and disruption of the hair follicle system. In this study, we used immunofluorescence, immunohistochemistry, real-time fluorescence quantitative PCR (RT-qPCR), and Kompetitive Allele-Specific PCR (KASP) genotyping to investigate molecular genetic characteristics of the Hoxc13 gene in Gansu alpine fine-wool sheep. The results revealed that Hoxc13 was significantly expressed during both the anagen and catagen phases (p < 0.05). It was found to be highly expressed predominantly in the dermal papillae and the inner and outer root sheaths, showing a distinct spatiotemporal expression pattern. Two single nucleotide polymorphisms (SNPs) in the exon 1 of Hoxc13, both the individual locus genotypes and the combined haplotypes were found to be correlated with wool length (p < 0.05). It was determined the mutations led to changes in mRNA expression, in which higher expression of this gene was related with longer wool length. In summary, this unique spatiotemporal expression pattern of the Hoxc13 gene may regulate the wool length of Gansu alpine fine-wool sheep, which can be used as a molecular genetic marker for wool traits and thus improve the breed.


Subject(s)
Genes, Homeobox , Hair Follicle , Wool , Animals , Biomarkers/metabolism , Gene Expression Regulation , Hair Follicle/metabolism , Molecular Biology , Phenotype , Sheep/genetics , Wool/metabolism
11.
BMC Genomics ; 25(1): 195, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373903

ABSTRACT

BACKGROUND: Lipoxygenase (LOX) is a multifunctional enzyme that is primarily related to plant organ growth and development, biotic and abiotic stress responses, and production of flavor-associated metabolites. In higher plants, the LOX family encompasses several isozymes with varying expression patterns between tissues and developmental stages. These affect processes including seed germination, seed storage, seedling growth, fruit ripening, and leaf senescence. LOX family genes have multiple functions in response to hormones such as methyl jasmonate (MeJA) and salicylic acid. RESULTS: In this study, we identified 30 and 95 LOX homologs in Medicago truncatula and Medicago sativa, respectively. These genes were characterized with analyses of their basic physical and chemical properties, structures, chromosomal distributions, and phylogenetic relationships to understand structural variations and their physical locations. Phylogenetic analysis was conducted for members of the three LOX subfamilies (9-LOX, type I 13-LOX, and type II 13-LOX) in Arabidopsis thaliana, Glycine max, M. truncatula, and M. sativa. Analysis of predicted promoter elements revealed several relevant cis-acting elements in MtLOX and MsLOX genes, including abscisic acid (ABA) response elements (ABREs), MeJA response elements (CGTCA-motifs), and antioxidant response elements (AREs). Cis-element data combined with transcriptomic data demonstrated that LOX gene family members in these species were most likely related to abiotic stress responses, hormone responses, and plant development. Gene expression patterns were confirmed via quantitative reverse transcription PCR. Several MtLOX genes (namely MtLOX15, MtLOX16, MtLOX20, and MtLOX24) belonging to the type I 13-LOX subfamily and other LOX genes (MtLOX7, MtLOX11, MsLOX23, MsLOX87, MsLOX90, and MsLOX94) showed significantly different expression levels in the flower tissue, suggesting roles in reproductive growth. Type I 13-LOXs (MtLOX16, MtLOX20, MtLOX21, MtLOX24, MsLOX57, MsLOX84, MsLOX85, and MsLOX94) and type II 13-LOXs (MtLOX5, MtLOX6, MtLOX9, MtLOX10, MsLOX18, MsLOX23, and MsLOX30) were MeJA-inducible and were predicted to function in the jasmonic acid signaling pathway. Furthermore, exogenous MtLOX24 expression in Arabidopsis verified that MtLOX24 was involved in MeJA responses, which may be related to insect-induced abiotic stress. CONCLUSIONS: We identified six and four LOX genes specifically expressed in the flowers of M. truncatula and M. sativa, respectively. Eight and seven LOX genes were induced by MeJA in M. truncatula and M. sativa, and the LOX genes identified were mainly distributed in the type I and type II 13-LOX subfamilies. MtLOX24 was up-regulated at 8 h after MeJA induction, and exogenous expression in Arabidopsis demonstrated that MtLOX24 promoted resistance to MeJA-induced stress. This study provides valuable new information regarding the evolutionary history and functions of LOX genes in the genus Medicago.


Subject(s)
Acetates , Arabidopsis , Cyclopentanes , Medicago truncatula , Oxylipins , Medicago truncatula/genetics , Medicago truncatula/metabolism , Medicago sativa/genetics , Genome-Wide Association Study , Phylogeny , Arabidopsis/genetics , Hormones/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
12.
Genes (Basel) ; 15(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397237

ABSTRACT

Keratin (K) is a major protein component of hair and is involved in hair growth and development. In this study, we analysed the expression, localization, and polymorphism of the K84 gene (KRT84) in Gansu Alpine Fine-wool sheep using immunofluorescence, RT-qPCR, and PARMS (penta-primer amplification refractory mutation system). Haplotypes of KRT84 were also constructed and their relationship with wool traits analysed. It was revealed that KRT84 was highly expressed in hair follicles, including the inner root sheath, outer root sheath, and hair medulla and at all six lamb ages investigated from 1 to 270 days of age. Three SNPs were detected in KRT84 exon 1, and they formed three haplotypes (named H1, H2, and H3) and six genotypes. Analyses revealed an association between haplotype combinations (diplotypes) and the mean fibre curvature, mean staple length, mean staple strength, mean fibre diameter, the coefficient of variation of fibre diameter, and comfort factor for these sheep. These results suggest that KRT84 is of importance in determining several key traits in Gansu Alpine Fine-wool sheep and that the gene could possibly be used as a genetic marker for wool trait selection in these sheep.


Subject(s)
Polymorphism, Single Nucleotide , Sheep , Wool , Animals , Genotype , Haplotypes , Phenotype , Polymorphism, Single Nucleotide/genetics , Sheep/genetics
13.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38364365

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNAs that play important roles in preadipocyte differentiation and adipogenesis. However, little is known about genome-wide identification, expression profile, and function of circRNAs in sheep. To investigate the role of circRNAs during ovine adipogenic differentiation, the subcutaneous adipose tissue of Tibetan rams was collected in June 2022. Subsequently, the preadipocytes were immediately isolated from collected adipose tissue and then induced to begin differentiation. The adipocytes samples cultured on days 0, 2, and 8 of preadipocytes differentiation were used to perform RNA sequencing (RNA-seq) analysis to construct the expression profiles of circRNAs. Subsequently, the function of differentially expressed circRNAs was investigated by performing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of their parent genes. Finally, a circRNAs-miRNAs-mRNAs network involved in adipogenic differentiation was been analyzed. As a result, a total of 6,449 candidate circRNAs were identified in ovine preadipocytes. Of these circRNAs identified, 63 candidate circRNAs were differentially expressed among the three differentiation stages and their parent genes were mainly enriched in acetyl-CoA metabolic process, positive regulation of lipid biosynthetic process, positive regulation of steroid biosynthetic process, and focal adhesion pathway (P < 0.05). Based on a circRNAs-miRNAs-mRNAs regulatory network constructed, circ_004977, circ_006132 and circ_003788 were found to function as competing endogenous RNAs (ceRNAs) to regulate ovine preadipocyte differentiation and lipid metabolism. The results provide an improved understanding of functions and molecular mechanisms of circRNAs underlying ovine adipogenesis in sheep.


The moderate fat deposition contributes to improve mutton quality, which is associated with the differentiation of preadipocytes. To investigate roles of circular RNAs (circRNAs) in preadipocyte differentiation, we identified circRNAs on days 0, 2, and 8 of preadipocytes differentiation and compared the expression profile of circRNAs at different adipogenic differentiation stages. A total of 6,449 candidate circRNAs were identified, among which 63 candidate circRNAs were differentially expressed among the three differentiation stages. The parent genes of differentially expressed circRNAs were enriched in several biological process and pathways related to lipid metabolism and synthesis. In addition, several circRNAs may regulate ovine preadipocyte differentiation by interacting with microRNAs (miRNAs). The results reveal the potential roles of circRNAs in adipogenic differentiation of sheep.


Subject(s)
MicroRNAs , RNA, Circular , Sheep/genetics , Animals , Male , RNA, Circular/genetics , Adipogenesis/genetics , RNA-Seq/veterinary , MicroRNAs/genetics , RNA, Messenger/genetics , Gene Regulatory Networks , Sequence Analysis, RNA/veterinary , Sheep, Domestic/genetics
14.
Genes (Basel) ; 15(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38254984

ABSTRACT

Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, KRTAP6-4, and KRTAP6-5) is a very important member with high polymorphism and notable association with some wool traits. In this study, we used real-time fluorescence quantitative PCR (RT-qPCR) and in situ hybridization to investigate spatiotemporal expression of KRTAP6s. The results revealed that KRTAP6 family genes were significantly expressed during anagen compared to other stages (p < 0.05). And it was found the five genes were expressed predominantly in the dermal papillae, inner and outer root sheaths, and showed a distinct spatiotemporal expression pattern. Also, it was found that KRTAP6-1 and KRTAP6-5 mRNA expression was negatively correlated with wool mean fiber diameter (MFD) and mean staple strength (MSS) (p < 0.05). In summary, the KRTAP6 family genes share a similar spatiotemporal expression pattern. And KRTAP6-1 and KRTAP6-5 may regulate the MFD and MSS of Gansu Alpine fine-wool sheep wool by changing the expression.


Subject(s)
Wool Fiber , Wool , Animals , Sheep/genetics , Hair Follicle , In Situ Hybridization , Keratins
15.
J Ethnopharmacol ; 323: 117696, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38171468

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Choerospondiatis is the dried and mature fruit of Choerospondias axillaris (Roxb.) Burtt et Hill. It has been used for a long time in Tibetan and Mongolian medicine, first recorded in the ancient Tibetan medicine book "Medicine Diagnosis of the King of the Moon" in the early 8th century. Fructus Choerospondiatis shows multiple pharmacological activities, especially in treating cardiovascular diseases. AIM OF THIS REVIEW: This paper reviews the progress in research on the botanical characteristics, traditional uses, chemical constituents, pharmacological activity, clinical studies, and quality control of Fructus Choerospondiatis. This review aims to summarize current research and provide a reference for further development and utilization of Fructus Choerospondiatis resources. METHOD: The sources for this review include the Pharmacopeia of the People's Republic of China (2020), theses, and peer-reviewed papers (in both English and Chinese). Theses and papers were downloaded from electronic databases including Web of Science, PubMed, SciFinder, Scholar, Springer, and China National Knowledge Infrastructure.The search terms used were "Choerospondias axillaris", "C. axillaris", "Choerospondias axillaris (Roxb.) Burtt et Hill", "Fructus choerospondiatis", "Guangzao", "Lapsi", and "Lupsi". RESULTS: Fructus Choerospondiatis contains polyphenols, organic acids, amino acids, fatty acids, polysaccharides, and other chemical components. These ingredients contribute to its diverse pharmacological activities such as antioxidant activity, protection against myocardial ischemia-reperfusion injury, anti-myocardial fibrosis, heart rhythm regulation, anti-tumor, liver protection, and immunity enhancement. It also affects the central nervous system, with the ability to repair damaged nerve cells. CONCLUSION: Fructus Choerospondiatis, with its various chemical compositions and pharmacological activities, is a promising medicinal resource. However, it remains under-researched, particularly in pharmacodynamic material basis and quality control. These areas require further exploration by researchers in the future.


Subject(s)
Anacardiaceae , Cardiovascular Diseases , Drugs, Chinese Herbal , Humans , Fruit , China , Cardiovascular Diseases/drug therapy , Quality Control , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Ethnopharmacology , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology
16.
Plant Sci ; 338: 111915, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944702

ABSTRACT

Plant filamentation temperature-sensitive H (FtsH) proteins are ATP-dependent zinc proteases that play an important role in regulating abiotic stress adaptions. Here we explore their potential role in abiotic stress tolerance in alfalfa, an important legume crop. Genomic analysis revealed seventeen MsFtsH genes in five clusters, which generally featured conserved domains and gene structures. Furthermore, the expression of MsFtsHs was found to be tightly associated with abiotic stresses, including osmotic, salt and oxidative stress. In addition, numerous stress responsive cis-elements, including those related to ABA, auxin, and salicylic acid, were identified in their promoter regions. Moreover, MsFtsH8 overexpression was shown to confer tolerance to salt and oxidative stress which was associated with reduced levels of reactive oxygen species, and enhanced expression and activity of antioxidant enzymes. Our results highlight MsFtsHs as key factors in abiotic stress tolerance, and show their potential usefulness for breeding alfalfa and other crops with improved yield and stress tolerance.


Subject(s)
Medicago sativa , Peptide Hydrolases , Medicago sativa/metabolism , Temperature , Peptide Hydrolases/metabolism , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Plant Breeding , Oxidative Stress , Sodium Chloride/metabolism , Stress, Physiological/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
17.
Front Genet ; 14: 1284554, 2023.
Article in English | MEDLINE | ID: mdl-37928247

ABSTRACT

RNA N6-melthyladenosine (m6A) can play an important role in regulation of various biological processes. Chicken ovary development is closely related to egg laying performance, which is a process primarily controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify the potential molecular mechanisms underlying chicken ovary development. The results indicated that m6A levels of mRNAs were altered dramatically during sexual maturity. A total of 1,476 differential m6A peaks were found between these two stages with 662 significantly upregulated methylation peaks and 814 downregulated methylation peaks after sexual maturation. A positive correlation was observed between the m6A peaks and gene expression levels, indicating that m6A may play an important role in regulation of chicken ovary development. Functional enrichment analysis indicated that apoptosis related pathways could be the key molecular regulatory pathway underlying the poor reproductive performance of Wuhua yellow-feathered chicken. Overall, the various pathways and corresponding candidate genes identified here could be useful to facilitate molecular design breeding for improving egg production performance in Chinese local chicken breed, and it might also contribute to the genetic resource protection of valuable avian species.

18.
Mol Biol Rep ; 50(12): 10097-10109, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910387

ABSTRACT

BACKGROUND: Filamentation temperature-sensitive H (FtsH) is an AAA+ ATP-dependent protease that plays a vital role in plant environmental adaption and tolerance. However, little is known about the function of the FtsH gene family in the most important legume model plant, Medicago truncatula. METHODS AND RESULTS: To identify and investigate the potential stress adaptation roles of FtsH gene family in M. truncatula, we conducted a series of genome-wide characterization and expression analyses. Totally, twenty MtFtsH genes were identified, which were unevenly distributed across eight chromosomes and classified into six evolution groups based on their phylogenetic relationships, with each group containing similar structures and motifs. Furthermore, MtFtsH genes exhibited a high degree of collinearity and homology with leguminous plants such as alfalfa and soybean. Multiple cis-elements in the upstream region of MtFtsH genes were also identified that responded to light, abiotic stress, and phytohormones. Public RNA-seq data indicated that MtFtsH genes were induced under both salt and drought stresses, and our transcript expression analysis showed that MtFtsH genes of MtFtsH1, MtFtsH2, MtFtsH4, MtFtsH9, and MtFtsH10 were up-regulated after ABA, H2O2, PEG, and NaCl treatments. These results suggest that MtFtsH genes may play a critical role in drought and high salt stress responses and the adaption processes of plants. CONCLUSIONS: This study provides a systematic analysis of FtsH gene family in M. truncatula, serving as a valuable molecular theoretical basis for future functional investigations. Our findings also extend the pool of potential candidate genes for the genetic improvement of abiotic stress tolerance in legume crops.


Subject(s)
Medicago truncatula , Medicago truncatula/genetics , Medicago truncatula/metabolism , Temperature , Phylogeny , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833936

ABSTRACT

Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.


Subject(s)
Lung Neoplasms , Microbiota , Sheep , Animals , Seasons , Rumen/physiology , Tibet , Cold-Shock Response , Lung Neoplasms/metabolism , Choline/metabolism , Inflammation Mediators/metabolism
20.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37756592

ABSTRACT

The prediction of prognostic outcome is critical for the development of efficient cancer therapeutics and potential personalized medicine. However, due to the heterogeneity and diversity of multimodal data of cancer, data integration and feature selection remain a challenge for prognostic outcome prediction. We proposed a deep learning method with generative adversarial network based on sequential channel-spatial attention modules (CSAM-GAN), a multimodal data integration and feature selection approach, for accomplishing prognostic stratification tasks in cancer. Sequential channel-spatial attention modules equipped with an encoder-decoder are applied for the input features of multimodal data to accurately refine selected features. A discriminator network was proposed to make the generator and discriminator learning in an adversarial way to accurately describe the complex heterogeneous information of multiple modal data. We conducted extensive experiments with various feature selection and classification methods and confirmed that the CSAM-GAN via the multilayer deep neural network (DNN) classifier outperformed these baseline methods on two different multimodal data sets with miRNA expression, mRNA expression and histopathological image data: lower-grade glioma and kidney renal clear cell carcinoma. The CSAM-GAN via the multilayer DNN classifier bridges the gap between heterogenous multimodal data and prognostic outcome prediction.


Subject(s)
Carcinoma, Renal Cell , Glioma , Kidney Neoplasms , MicroRNAs , Humans , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...