Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Adv Sci (Weinh) ; : e2403507, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733084

ABSTRACT

The defects in perovskite film can cause charge carrier trapping which shortens carrier lifetime and diffusion length. So defects passivation has become promising for the perovskite studies. However, how defects disturb the carrier transport and how the passivating affects the carrier transport in CsPbBr3 are still unclear. Here the carrier dynamics and diffusion processes of CsPbBr3 and LiBr passivated CsPbBr3 films are investigated by using transient absorption spectroscopy and transient absorption microscopy. It's found that there is a fast hot carrier trapping process with the above bandgap excitation, and the hot carrier trapping would decrease the population of cold carriers which are diffusible, then lower the carrier diffusion constant. It's proved that LiBr can passivate the defect and lower the trapping probability of hot carriers, thus improve the carrier diffusion rate. The finding demonstrates the influence of hot carrier trapping to the carrier diffusion in CsPbBr3 film.

2.
J Hazard Mater ; 472: 134486, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714052

ABSTRACT

Peanuts, known for their nutritional value, health benefits, and delicious taste, are susceptible to agricultural chemical contamination, posing a challenge to the peanut industry in China. While tristyrylphenol ethoxylates (TSPEOs) have garnered attention for their widespread use in pesticide formulations, their dissipation and potential risks in peanuts remain a gap in knowledge. This study, unique in its focus on TSPEOs, investigates their dissipation and potential risks under two common application modes: spraying and root irrigation. The concentration of total TSPEOs in peanut plants was significantly higher when sprayed (435-37,693 µg/kg) than in root irrigation (24-1602 µg/kg). The dissipation of TSPEOs was faster in peanuts and soil when sprayed, with half-lives of 3.67-5.59 d (mean: 4.37 d) and 5.41-7.07 d (mean: 5.95 d), respectively. The residue of TSPEOs in peanut shells and soil were higher with root irrigation (8.9-65.2 and 25.4-305.1 µg/kg, respectively) than with spraying (5.4-30.6 and 8.8-146.5 µg/kg, respectively). These results indicated that the dissipation behavior of TSPEOs in peanuts was influenced by application modes. While the healthy and ecological risk assessments of TSPEOs in soil and peanut shells showed no risks, root irrigation might pose a higher potential risk than spraying. This research provides valuable data for the judicious application of pesticides during peanut cultivation to enhance pesticide utilization and reduce potential risks.


Subject(s)
Agricultural Irrigation , Arachis , Plant Roots , Soil Pollutants , Soil Pollutants/analysis , Soil Pollutants/chemistry , Risk Assessment , Pesticide Residues/analysis , Pesticides/toxicity , Pesticides/chemistry , Pesticides/analysis , Agriculture , China
3.
Water Res ; 256: 121551, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38581981

ABSTRACT

Many antibiotic disinfection byproducts have been detected but their toxicity has not been evaluated adequately. In this report, the chlorination reaction kinetics of five common sulfamides (SAs), reaction intermediates and their toxicity were investigated. Chlorination of sulfapyridine (SPD), sulfamethazine (SMT), sulfathiazole (STZ), and sulfisoxazole (SIZ) followed the second-order kinetics, and were degraded completely within 10 min. A large number of reaction intermediates were deteced by LC-MS, among which a total of 16 intermediates were detected for the first time. Toxicity of the five SAs chlorination solutions was evaluated separately by examining their effects on the growth rate of S. salivarius K12, a commensal bacterium in the human digestive system. After 30 min chlorination, solutions of SMT, STZ and sulfadiazine (SDZ) each exhibited severe toxicity by inhibiting the bacteria growth completely, whereas the inhibition was only 50 % and 20  % by SIZ and SPD respectively. Based on the comparison between toxicity test results and mass spectra, three SA chlorination intermediates, m/z 187.2 (C10H10N4), m/z 287.2 (C9H7N3O4S2) and m/z 215 (C7H10N4O2S/C12H14N4) were proposed to be the primary toxicants in the chlorination products. Our study demonstrated the power of combined approach of chemical analysis and toxicity testing in identifying toxic disinfection byproducts, and highlighted the ne ed for more research on the toxicity evaluation and risk assessment of antibiotic disinfection byproducts.


Subject(s)
Disinfection , Sulfonamides , Humans , Sulfonamides/toxicity , Halogenation , Bacteria/drug effects , Disinfectants/toxicity , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
4.
Molecules ; 29(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611904

ABSTRACT

In recent years, caffeic acid and its derivatives have received increasing attention due to their obvious physiological activities and wide distribution in nature. In this paper, to clarify the status of research on plant-derived caffeic acid and its derivatives, nuclear magnetic resonance spectroscopy data and possible biosynthetic pathways of these compounds were collected from scientific databases (SciFinder, PubMed and China Knowledge). According to different types of substituents, 17 caffeic acid and its derivatives can be divided into the following classes: caffeoyl ester derivatives, caffeyltartaric acid, caffeic acid amide derivatives, caffeoyl shikimic acid, caffeoyl quinic acid, caffeoyl danshens and caffeoyl glycoside. Generalization of their 13C-NMR and 1H-NMR data revealed that acylation with caffeic acid to form esters involves acylation shifts, which increase the chemical shift values of the corresponding carbons and decrease the chemical shift values of the corresponding carbons of caffeoyl. Once the hydroxyl group is ester, the hydrogen signal connected to the same carbon shifts to the low field (1.1~1.6). The biosynthetic pathways were summarized, and it was found that caffeic acid and its derivatives are first synthesized in plants through the shikimic acid pathway, in which phenylalanine is deaminated to cinnamic acid and then transformed into caffeic acid and its derivatives. The purpose of this review is to provide a reference for further research on the rapid structural identification and biofabrication of caffeic acid and its derivatives.


Subject(s)
Biosynthetic Pathways , Caffeic Acids , Shikimic Acid , Carbon , Esters , Magnetic Resonance Spectroscopy
5.
Mol Phylogenet Evol ; 195: 108054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471599

ABSTRACT

The phylogeny and systematics of the genus Allium have been studied with a variety of diverse data types, including an increasing amount of molecular data. However, strong phylogenetic discordance and high levels of uncertainty have prevented the identification of a consistent phylogeny. The difficulty in establishing phylogenetic consensus and evidence for genealogical discordance make Allium a compelling test case to assess the relative contribution of incomplete lineage sorting (ILS), gene flow and gene tree estimation error on phylogenetic reconstruction. In this study, we obtained 75 transcriptomes of 38 Allium species across 10 subgenera. Whole plastid genome, single copy genes and consensus CDS were generated to estimate phylogenetic trees both using coalescence and concatenation methods. Multiple approaches including coalescence simulation, quartet sampling, reticulate network inference, sequence simulation, theta of ILS and reticulation index were carried out across the CDS gene trees to investigate the degrees of ILS, gene flow and gene tree estimation error. Afterward, a regression analysis was used to test the relative contributions of each of these forms of uncertainty to the final phylogeny. Despite extensive topological discordance among gene trees, we found a fully supported species tree that agrees with the most of well-accepted relationships and establishes monophyly of the genus Allium. We presented clear evidence for substantial ILS across the phylogeny of Allium. Further, we identified two ancient hybridization events for the formation of the second evolutionary line and subg. Butomissa as well as several introgression events between recently diverged species. Our regression analysis revealed that gene tree inference error and gene flow were the two most dominant factors explaining for the overall gene tree variation, with the difficulty in disentangling the effects of ILS and gene tree estimation error due to a positive correlation between them. Based on our efforts to mitigate the methodological errors in reconstructing trees, we believed ILS and gene flow are two principal reasons for the oft-reported phylogenetic heterogeneity of Allium. This study presents a strongly-supported and well-resolved phylogenetic backbone for the sampled Allium species, and exemplifies how to untangle heterogeneity in phylogenetic signal and reconstruct the true evolutionary history of the target taxa.


Subject(s)
Gene Flow , Phylogeny , Computer Simulation
6.
J Ethnopharmacol ; 328: 117998, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38484956

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY: To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS: First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS: Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1ß, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS: P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.


Subject(s)
Mastitis , Prunella , Humans , Animals , Female , Mice , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Signal Transduction , Milk/metabolism , Occludin/metabolism , Claudin-3/metabolism , Tandem Mass Spectrometry , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Mastitis/chemically induced , Mastitis/drug therapy , Mastitis/metabolism , Flavonoids/pharmacology
7.
Sci Total Environ ; 918: 170603, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325469

ABSTRACT

Trisiloxane ethoxylates (TSEOn) are widely used as agricultural surfactants due to their significant synergism with the active ingredients of pesticides, generally, including three typical end groups which are hydroxyl (TSEOn-H), methoxy (TSEOn-CH3), and acetoxy (TSEOn-COCH3), respectively. However, the potential ecotoxicological and endocrine-disrupting risks of TSEOn congeners have recently attracted ever-growing concern. Above all, there is limited research on the concentration levels of TSEOn in agroecosystems. This study, simultaneous analysis of 39 TSEOn oligomers in citrus orchard soils in China was implemented by the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method detection limits (MDLs) and the method quantification limits (MQLs) for TSEOn were 0.003-0.07 µg/kg and 0.01-0.20 µg/kg, respectively. The recoveries for TSEOn oligomers in soils ranged from 81 % âˆ¼ 106 % with related standard deviations (RSDs) < 7 %. This newly developed UPLC-MS/MS method with high sensitivity and stability allows us to successfully trace the occurrence of TSEOn congeners in the citrus orchard soils from 3 provinces and 1 municipality in China. The detected concentrations of TSEOn-H oligomers in the sampled soils ranged from 0.02 to 0.288 µg/kg (dry weight). The congener profiles of TSEOn-H were dominated by TSEOn-H (n = 6- 8) in the soils. Additionally, the total concentrations of TSEOn-H congeners (ΣTSEOn-H) in the soils were in the range of 0.03 to 1.49 µg/kg. A comparison of ΣTSEOn-H distribution among the different citrus orchard soils indicated a higher level of ΣTSEOn-H in the soil samples collected from Zhejiang Province. Notably, TSEOn-CH3 or TSEOn-COCH3 oligomers were not detected in the tested soils. To the best of our knowledge, this is the first report on the occurrence and distribution of TSEOn congeners in agricultural soils.


Subject(s)
Citrus , Siloxanes , Soil , Chromatography, Liquid , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Solid Phase Extraction
8.
Plant Divers ; 46(1): 28-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343588

ABSTRACT

The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification. Much can be learned about this process from phylogeny-based trait evolution. However, such inference is often plagued by genome-wide gene-tree discordance (GTD), mostly due to incomplete lineage sorting (ILS) and/or introgressive hybridization, especially when the genes underlying the traits appear discordant. Here, by collecting transcriptomes, whole chloroplast genomes (cpDNA), and population genetic datasets, we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent "phylogenetic discordance" between different morphological traits and probable species phylogeny in the Allium subg. Cyathophora. Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes (SCGs), as supported by the KS distribution. However, GTD was high across the genomes of subg. Cyathophora: ∼27%-38.9% of the SCG trees were in conflict with the species tree. Plasmid and nuclear incongruence was also present. Our coalescent simulations indicated that such GTD was mainly a product of ILS. Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg. Cyathophora phylogeny may have caused the character transition, as well as the anomalous cpDNA tree. Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.

9.
Int J Biol Macromol ; 258(Pt 2): 128873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141704

ABSTRACT

Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.


Subject(s)
Diabetes Mellitus , Plants, Medicinal , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Plants, Edible , Phosphatidylinositol 3-Kinases/metabolism , Plants, Medicinal/chemistry , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Polysaccharides/chemistry
10.
J Ethnopharmacol ; 319(Pt 3): 117257, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37852338

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osmanthus fragrans fruit (OFF) exhibits hepatoprotective function, and it is consumed as food and used in traditional medicine in China. Nuezhenoside G13 (G13) is present in the highest levels in OFF. Autoimmune hepatitis (AIH) is a manifestation of liver disease and seriously endangers health. However, it remains unclear whether G13 affects AIH. AIM OF THE STUDY: To clarify the effect of G13 on AIH and its exact underlying mechanism from a new perspective. MATERIALS AND METHODS: We used a Concanavalin A-induced AIH mouse model and lipopolysaccharide-treated Raw264.7 cells to quantify serum biochemical indicators and confirm whether G13 exhibited protective effects in the AIH mice. Furthermore, we evaluated the effect of G13 via hematoxylin and eosin and immunohistochemical staining. We used enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction to quantify the inflammatory factors. We confirmed that G13 inhibited apoptosis via terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Molecular docking, immunofluorescence, and western blotting experiments of G13 and key proteins of the NF-κB/MAPK pathway revealed that G13 alleviated inflammation. In addition, Cell Counting Kit-8, ELISA, NO detection, and western blotting assays were performed. Finally, we used an inhibitor of the p38 MAPK to verify that G13 reduced inflammation through the NF-κB/MAPK pathway in Raw264.7 cells. RESULTS: The in vivo experiments revealed that G13 improved oxidative stress and apoptosis. In addition, G13 decreased the expression levels of CD4+, CD8+, F4/80+, and Ly6G and the secretion of inflammatory factors. Interestingly, G13 reduced the phosphorylation levels of IκBα, NF-κB, JNK, ERK1/2, and p38. Additionally, the in vitro experiments revealed that G13 alleviated inflammation through the NF-κB/MAPK pathway in lipopolysaccharide-treated Raw264.7 cells. Furthermore, molecular docking demonstrated that the binding fraction of G13 with these proteins was high. CONCLUSION: G13 suppressed oxidative stress, apoptosis, and inflammation in a Concanavalin A-induced AIH mouse model. Furthermore, G13 exerted its effect through the NF-κB/MAPK pathway.


Subject(s)
Hepatitis, Autoimmune , NF-kappa B , Animals , Mice , Concanavalin A/toxicity , Fruit , Lipopolysaccharides , Molecular Docking Simulation , Inflammation
11.
J Agric Food Chem ; 71(46): 18024-18036, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939378

ABSTRACT

Anthocyanins (AOCs) are phenols that are readily soluble in water and are commonly present in plants. The chemical instability of AOC, however, causes it to be severely limited in terms of extraction and purification. Hence, in order to obtain efficient and stable extraction of AOC, we designed hydrophilic multifunctional monomer covalent organic framework molecularly imprinted polymers (HMCMIPs) as adsorbents. The functional reagent, p-aminobenzenesulfonic acid (ASA), was added to this material during synthesis to facilitate the sulfonation modification of covalent organic frameworks (COFs), which enhanced its affinity for hydrophilic guests (cyanidin-3-O-glucoside, the representative nutritional and functional ingredient in AOC). With ASA serving as a terminator, overextension of the material to form micron-level cross-linked structures is prevented, thereby increasing its surface area and mass transfer efficiency. The biomimetic receptors were then created by integrating MIPs into sulfonated COFs in order to create multiple binding sites specific for C3G recognition. HMCMIPs exhibited excellent adsorption capacity (1566 mg/g) and superior selectivity (selectivity coefficient >12) for C3G. It has been demonstrated that high purity (93.72%) C3G can be obtained rapidly and efficiently by utilizing HMCMIPs. There may be a potential benefit to the synthesis strategy of HMCMIPs for the extraction of specific active ingredients in the future.


Subject(s)
Metal-Organic Frameworks , Molecular Imprinting , Molecularly Imprinted Polymers , Anthocyanins , Polymers/chemistry , Biomimetics , Glucosides , Adsorption , Solid Phase Extraction
12.
Front Pharmacol ; 14: 1265825, 2023.
Article in English | MEDLINE | ID: mdl-37849728

ABSTRACT

Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1ß and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.

13.
Toxicology ; 499: 153649, 2023 11.
Article in English | MEDLINE | ID: mdl-37827210

ABSTRACT

Environmental occurrence and human exposure of emerging organophosphate esters (eOPEs) have increased significantly in recent years. Resorcinol bis(diphenyl) phosphate (RDP) is one of the major eOPEs detected in indoor dust, but the knowledge on its toxicities and health risks is rather limited. In this study, we investigated the in vitro estrogenic effects and underlying mechanism of RDP in comparison with a legacy OPE triphenyl phosphate (TPHP). Our results showed that RDP promoted MCF-7 cell proliferation with the lowest effect concentration of 2.5 µM, and the maximum enhancement of 1.6 folds is greater than that of TPHP (1.3 folds). The effect was inhibited completely by an estrogen receptor (ER) antagonist, suggesting that ER activation was responsible for the enhancement. In luciferase reporter gene assays both RDP and TPHP activated ER transcriptional activity at 2.5 µM, but RDP activity was higher than TPHP. Competitive fluorescence binding assays showed that RDP bound to ER with an IC10 of 0.26 µM, which is 20 folds lower than TPHP (5.6 µM). Molecular docking simulation revealed that both RDP and TPHP interacted with ER at the binding pocket of estradiol, although the hydrogen bonds were different. Taken together, RDP exerted stronger estrogenic effects than TPHP through ER-mediated pathways and may pose more health risks.


Subject(s)
Flame Retardants , Phosphates , Humans , Receptors, Estrogen , Estrogens/toxicity , Molecular Docking Simulation , Organophosphates/toxicity , Resorcinols/toxicity , Esters/toxicity
14.
J Chem Inf Model ; 63(19): 6029-6042, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37749914

ABSTRACT

High-entropy alloys (HEAs) with high hardness and high ductility can be considered as candidates for wear-resistant applications. However, designing novel HEAs with multiple desired properties using traditional alloy design methods remains challenging due to the enormous composition space. In this work, we proposed a machine-learning-based framework to design HEAs with high Vickers hardness (H) and high compressive fracture strain (D). Initially, we constructed data sets containing 172,467 data with 161 features for D and H, respectively. Four-step feature selection was performed, with the selection of 12 and 8 features for the D and H prediction models based on the optimal algorithms of the support vector machine (SVR) and light gradient boosting machine (LightGBM), respectively. The R2 of the well-trained models reached 0.76 and 0.90 for the 10-fold cross validation. Nondominated sorting genetic algorithm version II (NSGA-II) and virtual screening were employed to search for the optimal alloying compositions, and four recommended candidates were synthesized to validate our methods. Notably, the D of three candidates have shown significant improvements compared to the samples with similar H in the original data sets, with increases of 135.8, 282.4, and 194.1% respectively. Analyzing the candidates, we have recommended suitable atomic percentage ranges for elements such as Al (2-14.8 at %), Nb (4-25 at %), and Mo (3-9.9 at %) in order to design HEAs with high hardness and ductility.


Subject(s)
Algorithms , Alloys , Entropy , Machine Learning , Protein Transport
15.
PLoS Pathog ; 19(9): e1011641, 2023 09.
Article in English | MEDLINE | ID: mdl-37708231

ABSTRACT

RNA viruses cause numerous infectious diseases in humans and animals. The crosstalk between RNA viruses and the innate DNA sensing pathways attracts increasing attention. Recent studies showed that the cGAS-STING pathway plays an important role in restricting RNA viruses via mitochondria DNA (mtDNA) mediated activation. However, the mechanisms of cGAS mediated innate immune evasion by RNA viruses remain unknown. Here, we report that seneca valley virus (SVV) protease 3C disrupts mtDNA mediated innate immune sensing by cleaving porcine cGAS (pcGAS) in a species-specific manner. Mechanistically, a W/Q motif within the N-terminal domain of pcGAS is a unique cleavage site recognized by SVV 3C. Three conserved catalytic residues of SVV 3C cooperatively contribute to the cleavage of pcGAS, but not human cGAS (hcGAS) or mouse cGAS (mcGAS). Additionally, upon SVV infection and poly(dA:dT) transfection, pcGAS and SVV 3C colocalizes in the cells. Furthermore, SVV 3C disrupts pcGAS-mediated DNA binding, cGAMP synthesis and interferon induction by specifically cleaving pcGAS. This work uncovers a novel mechanism by which the viral protease cleaves the DNA sensor cGAS to evade innate immune response, suggesting a new antiviral approach against picornaviruses.


Subject(s)
Nucleotidyltransferases , Peptide Hydrolases , Picornaviridae , Animals , Humans , Mice , DNA, Mitochondrial , Endopeptidases , Mitochondria , Picornaviridae/physiology , Swine , Nucleotidyltransferases/metabolism
16.
Commun Biol ; 6(1): 906, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667004

ABSTRACT

Subnival glasshouse plants provide a text-book example of high-altitude adaptation with reproductive organs enclosed in specialized semi-translucent bracts, monocarpic reproduction and continuous survival under stress. Here, we present genomic, transcriptomic and metabolomic analyses for one such plant, the Noble rhubarb (Rheum nobile). Comparative genomic analyses show that an expanded number of genes and retained genes from two recent whole-genome duplication events are both relevant to subnival adaptation of this species. Most photosynthesis genes are downregulated within bracts compared to within leaves, and indeed bracts exhibit a sharp reduction in photosynthetic pigments, indicating that the bracts no longer perform photosynthesis. Contrastingly, genes related to flavonol synthesis are upregulated, providing enhanced defense against UV irradiation damage. Additionally, anatomically abnormal mesophyll combined with the downregulation of genes related to mesophyll differentiation in bracts illustrates the innovation and specification of the glass-like bracts. We further detect substantial accumulation of antifreeze proteins (e.g. AFPs, LEAs) and various metabolites (e.g. Proline, Protective sugars, procyanidins) in over-wintering roots. These findings provide new insights into subnival adaptation and the evolution of glasshouse alpine plants.


Subject(s)
Rheum , Rheum/genetics , Multiomics , Acclimatization/genetics , Comparative Genomic Hybridization , Down-Regulation
17.
Med Rev (2021) ; 3(1): 75-84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37724105

ABSTRACT

Single-nucleotide variants account for about half of known pathogenic genetic variants in human. Genome editing strategies by reversing pathogenic point mutations with minimum side effects have great therapeutic potential and are now being actively pursued. The emerge of precise and efficient genome editing strategies such as base editing and prime editing provide powerful tools for nucleotide conversion without inducing double-stranded DNA breaks (DSBs), which have shown great potential for curing genetic disorders. A diverse toolkit of base editors has been developed to improve the editing efficiency and accuracy in different context of application. Here, we summarized the evolving of base editors (BEs), their limitations and future perspective of base editing-based therapeutic strategies.

18.
Commun Biol ; 6(1): 867, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612424

ABSTRACT

Rhubarb is the collective name for various perennial plants from the genus Rheum L. and the Polygonaceae family. They are one of the most ancient, commonly used, and important herbs in traditional Chinese medicine. Rhubarb is a major source of anthraquinones, but how they are synthesized remains largely unknown. Here, we generate a genome sequence assembly of one important medicinal rhubarb R. tanguticum at the chromosome level, with 2.76 Gb assembled into 11 chromosomes. The genome is shaped by two recent whole-genome duplication events and recent bursts of retrotransposons. Metabolic analyses show that the major anthraquinones are mainly synthesized in its roots. Transcriptomic analysis reveals a co-expression module with a high correlation to anthraquinone biosynthesis that includes key chalcone synthase genes. One CHS, four CYP450 and two BGL genes involved in secondary metabolism show significantly upregulated expression levels in roots compared with other tissues and clustered in the co-expression module, which implies that they may also act as candidate genes for anthraquinone biosynthesis. This study provides valuable insights into the genetic bases of anthraquinone biosynthesis that will facilitate improved breeding practices and agronomic properties for rhubarb in the future.


Subject(s)
Rheum , Rheum/genetics , Plant Breeding , Anthraquinones , Chromosomes
19.
Sci Total Environ ; 901: 166257, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37574057

ABSTRACT

Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.

20.
Mar Pollut Bull ; 194(Pt A): 115311, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480803

ABSTRACT

Antifouling biocides may cause adverse effects on non-target species. This study aims to determine the distribution, sources, and ecological risks of antifouling biocides in the surface waters of the Qiantang River and its estuary in eastern China. The concentrations of total antifouling biocides were ranged from 12.9 to 215 ng/L for all water samples. Atrazine, diuron and tributyltin were the major compounds in the water bodies of the study area. The acute and chronic toxicity criteria for tributyltin, diuron and atrazine were derived for freshwater and saltwater, respectively, based on the species sensitivity distribution approach. The freshwater and saltwater criteria were slightly different, and the toxicity to aquatic organisms could be summarized as tributyltin > diuron > atrazine. The graded ecological risk rating showed that the long-term risk of TBT was significant in coastal waters. The pollution of TBT in the Qiantang River deserves further attention.


Subject(s)
Atrazine , Biofouling , Rivers , Estuaries , Biofouling/prevention & control , Diuron , Water Quality , China , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...