Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Immunobiology ; 229(5): 152831, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944891

ABSTRACT

The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.

2.
Mater Today Bio ; 25: 101012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38464495

ABSTRACT

Urethral stricture (US) is a common disease in urology, lacking effective treatment options. Although injecting a stem cells suspension into the affected area has shown therapeutic benefits, challenges such as low retention rate and limited efficacy hinder the clinical application of stem cells. This study evaluates the therapeutic impact and the mechanism of adipose-derived vascular fraction (SVF) combined with cell sheet engineering technique on urethral fibrosis in a rat model of US. The results showed that SVF-cell sheets exhibit positive expression of α-SMA, CD31, CD34, Stro-1, and eNOS. In vivo study showed less collagen deposition, low urethral fibrosis, and minimal tissue alteration in the group receiving cell sheet transplantation. Furthermore, the formation of a three-dimensional (3D) tissue-like structure by the cell sheets enhances the paracrine effect of SVF, facilitates the infiltration of M2 macrophages, and suppresses the TGF-ß/Smad2 pathway through HGF secretion, thereby exerting antifibrotic effects. Small animal in vivo imaging demonstrates improved retention of SVF cells at the damaged urethra site with cell sheet application. Our results suggest that SVF combined with cell sheet technology more efficiently inhibits the early stages of urethral fibrosis.

3.
Cell Death Dis ; 15(2): 107, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302412

ABSTRACT

Programmed cell death 1 ligand 1 (PDL1)/programmed cell death 1 (PD1) blockade immunotherapy provides a prospective strategy for the treatment of colorectal cancer (CRC), but various constraints on the effectiveness of the treatment are still remaining. As reported in previous studies, follistatin-like 3 (FSTL3) could mediate inflammatory response in macrophages by induction lipid accumulation. Herein, we revealed that FSTL3 were overexpressed in malignant cells in the CRC microenvironment, notably, the expression level of FSTL3 was related to tumor immune evasion and the clinical efficacy of anti-PD1 therapy. Further studies determined that hypoxic tumor microenvironment induced the FSTL3 expression via HIF1α in CRC cells, FSTL3 could bind to the transcription factor c-Myc (354-406 amino acids) to suppress the latter's ubiquitination and increase its stability, thereby to up-regulated the expression of PDL1 and indoleamine 2,3-dioxygenase 1 (IDO1). The results in the immunocompetent tumor models verified that FSLT3 knockout in tumor cells increased the proportion of CD8+ T cells in the tumor microenvironment, reduced the proportion of regulatory T cells (CD25+ Foxp3+) and exhausted T cells (PD1+ CD8+), and synergistically improved the anti-PD1 therapy efficacy. To sum up, FSTL3 enhanced c-Myc-mediated transcriptional regulation to promote immune evasion and attenuates response to anti-PD1 therapy in CRC, suggesting the potential of FSTL3 as a biomarker of immunotherapeutic efficacy as well as a novel immunotherapeutic target in CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Tumor Escape , Immunotherapy/methods , T-Lymphocytes, Regulatory , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Tumor Microenvironment
4.
Int J Mol Sci ; 20(5)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857183

ABSTRACT

The aminotransferase from Bacillus circulans (BtrR), which is involved in the biosynthesis of butirosin, catalyzes the pyridoxal phosphate (PLP)-dependent transamination reaction to convert valienone to ß-valienamine (a new ß-glycosidase inhibitor for the treatment of lysosomal storage diseases) with an optical purity enantiomeric excess value. To explore the stereoselective mechanism of valienamine generated by BtrR, multiple molecular dynamics (MD) simulations were performed for the BtrR/PLP/valienamine and BtrR/PLP/ß-valienamine complexes. The theoretical results showed that ß-valienamine could make BtrR more stable and dense than valienamine. ß-valienamine could increase the hydrogen bond probability and decrease the binding free energy between coenzyme PLP and BtrR by regulating the protein structure of BtrR, which was conducive to the catalytic reaction. ß-valienamine maintained the formation of cation-p interactions between basic and aromatic amino acids in BtrR, thus enhancing its stability and catalytic activity. In addition, CAVER 3.0 analysis revealed that ß-valienamine could make the tunnel of BtrR wider and straight, which was propitious to the removal of products from BtrR. Steered MD simulation results showed that valienamine interacted with more residues in the tunnel during dissociation compared with ß-valienamine, resulting in the need for a stronger force to be acquired from BtrR. Taken together, BtrR was more inclined to catalyze the substrates to form ß-valienamine, either from the point of view of the catalytic reaction or product removal.


Subject(s)
Bacillus/metabolism , Cyclohexenes/metabolism , Hexosamines/metabolism , Molecular Dynamics Simulation , Transaminases/metabolism , Bacillus/chemistry , Bacillus/enzymology , Hydrogen Bonding , Molecular Docking Simulation , Pyridoxal Phosphate/metabolism , Stereoisomerism , Substrate Specificity , Transaminases/chemistry
5.
RNA ; 11(5): 567-77, 2005 May.
Article in English | MEDLINE | ID: mdl-15811923

ABSTRACT

Maturation of the tRNA 3' terminus is a complicated process in bacteria. Usually, it is initiated by an endonucleolytic cleavage carried out by RNase E and Z in different bacteria. In Escherichia coli, RNase E cleaves AU-rich sequences downstream of tRNA, producing processing intermediates with a few extra residues at the 3' end; these are then removed by exoribonuclease trimming to generate the mature 3' end. Here we show that essentially all E. coli tRNA precursors contain a potential RNase E cleavage site, the AU-rich sequence element (AUE), in the 3' trailer. This suggests that RNase E cleavage and exonucleolytic trimming is a general pathway for tRNA maturation in this organism. Remarkably, the AUE immediately downstream of each tRNA is selectively conserved in bacteria having RNase E and tRNA-specific exoribonucleases, suggesting that this pathway for tRNA processing is also commonly used in these bacteria. Two types of RNase E-like proteins are identified in actinobacteria and the alpha-subdivision of proteobacteria. The tRNA 3' proximal AUE is conserved in bacteria with only one type of E-like protein. Selective conservation of the AUE is usually not observed in bacteria without RNase E. These results demonstrate a novel example of co-evolution of RNA sequences with processing activities.


Subject(s)
Bacteria/enzymology , Conserved Sequence/genetics , Endoribonucleases/metabolism , Evolution, Molecular , RNA, Bacterial/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Bacteria/genetics , Base Composition , Base Sequence , Computational Biology , Escherichia coli/enzymology , Escherichia coli/genetics , Genes, Bacterial/genetics , Genome, Bacterial , Molecular Sequence Data , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Bacterial/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...